Fonction de Mittag-Leffler
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématiques, la fonction de Mittag-Leffler, notée Eαβ qui tient son nom du mathématicien Gösta Mittag-Leffler, est une fonction spéciale, c’est-à-dire qui ne peut être calculée à partir d'équations rationnelles, qui s'applique dans le plan complexe (En mathématiques, le plan complexe (encore appelé plan de Cauchy) désigne un plan dont chaque point est la représentation graphique d'un nombre complexe unique.) et dépend de deux paramètres complexes α et β. La fonction est définie pour α > 0 :

E_{\alpha \beta} (z) = \sum_{k=0}^\infty {z^k \over \Gamma (\alpha k + \beta)}

Dans ce cas, la série converge pour toute valeur d'argument z, ce qui fait de la fonction une fonction entière.

Ce résultat est connu sous le nom de théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir d'axiomes. Un...) de Mittag-Leffler.

La fonction d'erreur

La fonction d'erreur est un cas particulier de la fonction de Mittag-Leffler :

w(z) = exp( − z2)erfc( − iz) = E1 / 2,1(iz)
Page générée en 0.019 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique