Formule du multinôme de Newton
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématiques, la formule du multinôme de Newton est une relation donnant le développement d'une puissance entière n d'une somme d'un nombre fini m de termes sous forme d'une somme de produits de puissances de ces termes affectés de coefficients. Nous avons pour tous entiers naturels m et n, et pour tous réels ou complexes x_1,x_2,\dots,x_m,

(x_1 + x_2 + x_3 + \dots + x_m)^n   = \sum_{k_1+k_2+k_3+\ldots+k_m=n} {n \choose k_1, k_2, k_3, \dots, k_m}   x_1^{k_1} x_2^{k_2} x_3^{k_3} \dots x_m^{k_m}.

La somme porte sur toutes les combinaisons d'indices entiers naturels k_1,\dots,k_m tels que k_1+k_2+\dots+k_m = n, certains d'entre eux pouvant être nuls.

Une écriture équivalente mais bien plus concise consiste à sommer sur tous les multi-indices \vec k de dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son...) m dont le module \left|\vec k\right| = \sum\nolimits_{i=0}^m k_i est égal à n :

\left( \sum_{i=1}^m x_i \right)^n = \sum_{\left|\vec k\right|=n} {n\choose\vec k} \prod_{i=1}^m x_i^{k_i}

Les nombres

{n \choose k_1, k_2, k_3, \ldots, k_m} = {n\choose\vec k} = \frac{n!}{k_1! k_2! k_3! \dots k_m!} = \frac{n!}{\prod_{i=0}^m k_i!}

sont appelés les coefficients multinomiaux.

La formule du binôme ( en mathématique, binôme, une expression algébrique ; voir aussi binôme de Newton et coefficient binomial un binôme est un groupe de deux personnes, voir Équipe en binôme en sciences naturelles, le mot...) s'obtient comme cas particulier de la formule du multinôme, pour m = 2 ; et dans ce cas les coefficients multinomiaux sont les coefficients binomiaux.

Exemples

Voyez également

  • La formule du binôme de Newton
  • La formule du trinôme de Newton
  • Le coefficient binomial (Les coefficients binomiaux interviennent dans de nombreux domaines des mathématiques : développement du binôme, dénombrement, développement en série…)
Page générée en 0.080 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique