Axiome de l'infini - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Indépendance de l'axiome de l'infini

Dans la théorie ZFC, si on omet l'axiome de l'infini, la collection des entiers naturels peut être une classe propre, c'est-à-dire que l'axiome de l'infini est bien nécessaire pour l'existence de ω. En effet on montre que dans un univers de la théorie des ensembles, Vω (voir axiome de fondation), la classe des ensembles héréditairement finis (les ensembles finis dont les éléments sont des ensembles finis, et ainsi de suite), est un modèle de tous les axiomes de ZFC sauf l'axiome de l'infini. En effet dans ce cas tous les ordinaux sont des entiers, or la classe des ordinaux est forcément une classe propre (voir paradoxe de Burali-Forti).

Ce modèle montre donc également que l'axiome de l'infini est indépendant des autres axiomes de ZFC, bien-sûr à supposer que ZFC soit une théorie cohérente.

Page générée en 0.091 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise