BaBar (d'après la notation du « méson B » et de son antiparticule, le « B barre ») est une expérience de physique des particules réalisée dans le cadre d'une collaboration internationale auprès de l'anneau de stockage e+e- PEP-II, au Stanford Linear Accelerator Center (SLAC) en Californie. Elle est dédiée à l'étude de la physique des mésons B et de la violation de la symétrie CP dans leurs désintégrations faibles.
BaBar a cessé de prendre des données en avril 2008 et compte plus de 400 publications, fin 2009, dans Physical Review D et Physical Review Letters.
Les particules élémentaires présentent des symétries dont l'étude permet de comprendre la nature de leurs interactions. En particulier les symétries discrètes C (conjugaison de charge), P (parité) et T (inversion du temps) ne sont pas conservées dans les interactions faibles des quarks. Le théorème CPT cependant établit que leur produit est conservé par toutes les interactions. En particulier la masse et la durée de vie moyenne d'une particule sont identiques à celles de son anti-particule. Nous savons depuis 1964 que la symétrie CP est violée, très faiblement, dans les désintégrations des kaons neutres.
Le modèle standard explique cette violation de la symétrie CP par la présence d'un terme complexe dans la matrice de Cabibbo-Kobayashi-Maskawa (CKM) qui paramétrise les désintégrations électrofaibles des quarks. Ce terme complexe ne peut exister que lorsque le nombre de familles de quarks est au moins égal à 3, ce qui est le cas.
L'expérience BaBar a été construite pour étudier la violation de CP dans les désintégration faibles des mésons neutre B0, formé d'un quark d et d'un anti-quark b, et chargé B+, formé d'un quark u d'un anti-quark b.
Un développement au premier ordre dû à Lincoln Wolfenstein (en) décrit le terme complexe de la matrice CKM en fonction d'un nombre complexe (ρ + i η), dont la représentation dans le plan complexe détermine le triangle d'unitarité de la matrice CKM.
Une première partie, importante, du programme scientifique est la métrologie de grande précision et fortement surcontrainte (le petit nombre de paramètres du modèle doit rendre compte d'un grand nombre de mesures expérimentales) de la matrice CKM. Les mesures des angles des triangles, reliées à la phase de (ρ + i η), ne sont possibles que si au-moins deux amplitudes contribuant au même état final interfèrent. Les mesures de longueur des côtés du triangle utilisent des simples mesures de taux d'embranchement. Pour ces mesures, on s'efforce de choisir une désintégration pour laquelle un seul diagramme de Feynman contribue au premier ordre, et pour laquelle la connaissance des paramètres hadroniques, qui permettent de relier les caractéristiques des désintégrations des mésons – que l'on observe – à celle des quarks qui les constituent – décrits par la matrice CKM – est suffisamment bonne.
La seconde partie du programme est la recherche de violation du modèle standard, due à une "nouvelle" physique éventuelle, comme la supersymétrie. Pour cela, on étudie des modes dont le diagramme de Feynman dominant contient une boucle : la contribution d'une particule inconnue à ce jour induirait alors un effet mesurable. La recherche de modes pour lesquels le modèle standard prédit un taux d'embranchement extrêmement faible est d'un intérêt particulier.