Distribution de temps de séjour - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

DTS des réacteurs idéaux

Réacteur tubulaire idéal


Le réacteur tubulaire idéal n'a qu'une fonction retardatrice et ne change pas le signal d'entrée. Pour une injection par impulsion, on obtient le même signal à la sortie après un certain temps qui correspond au temps de séjour moyen τ.

La distribution de séjour est un pic très étroit situé au temps τ.

E(t) = \delta(t-\tau) \qquad (18)

Le même raisonnement peut être appliqué à l'injection échelon où l'on obtient un échelon décalé de τ avec une réponse désignée par

F(t) = H(t-\tau) \qquad (19)

où H est la fonction échelon unité de Heaviside.

Réacteur parfaitement mélangé


Si l'on introduit dans un réacteur parfaitement mélangé une impulsion de n0 moles de traceur, le système va instantanément atteindre la concentration moyenne maximale

C_{0,t = 0} = \frac {n_0}{V} \qquad (20)

L'évolution de la concentration en fonction du temps peut alors être déduite par l'intégration du bilan de matière donné par l'équation (21) où la variation de la quantité de traceur dans le réacteur est égale à la quantité de traceur qui quitte le réacteur :

V \cdot \frac{dC(t)}{dt} = -Q \cdot C(t) \qquad (21)

ce qui donne

\frac {C(t)}{C_0} = exp(-\frac {t}{\tau}) \qquad (22)

d'où

E(t) = \frac{1}{\tau} exp(-\frac {t}{\tau}) \qquad (23)
F(t) = 1-exp(-\frac {t}{\tau}) \qquad (24)

Réacteur tubulaire à écoulement laminaire


Le réacteur tubulaire à écoulement laminaire est un cas particulier du réacteur tubulaire avec un comportement hydrodynamique connu et bien défini, ce qui permet d'en prédire la distribution de séjour. La différence de temps de séjour des éléments de volume dans le réacteur est la conséquence du profil de vitesse parabolique (Ecoulement de Poiseuille). Dans un filet de fluide de position radiale constante, chaque particule traverse le réacteur sans être influencée par les autres.

La vitesse dans un tube ayant un écoulement laminaire est fonction de la position dans le tube

 u = u_{max} \cdot (1-\frac{R^{2}}{R_{0}^{2}}) \qquad (25)

umax est la vitesse au centre du tube et \bar u la valeur moyenne sur la section (\bar u = \frac{Q}{\pi \cdot R^2}) . La relation entre ces 2 vitesses est u_{max}= 2 \cdot \bar u .

Le temps de séjour d'un élément de volume qui se trouve dans un filet de fluide donné vaut ainsi:

t = \frac{L}{u} = L \cdot (u_{max} \cdot (1-\frac{R^{2}}{R_{0}^{2}}))^{-1} = \frac{t_{min}}{(1-\frac{R^{2}}{R_{0}^{2}})} \qquad (26)

avec t_{min} = \frac{L}{u_{max}} = \frac{\tau}{2}\qquad (27)

La fraction du flux qui se trouve dans la position R + dR avec une vitesse v + dv qui a un temps de passage t + dt se calcule avec la relation suivante:

E(t)dt = \frac{dQ}{Q} = \frac{u \cdot 2 \cdot \pi \cdot R dR}{\pi \cdot R_{0}^{2} \cdot \bar u} = \frac {2 \cdot u \cdot RdR}{\bar u \cdot R_{0}^{2}} \qquad (28)


Pour obtenir la relation entre dt et dR, on utilise l'équation (27) et par dérivation, on a

dt = \frac {2 \cdot R \cdot t_{min}}{R_{0}^{2} \cdot (1-\frac{R^{2}}{R_{0}^{2}})^2}dR = \frac {2}{R^2_{0} \cdot t_{min}} \cdot \left\{\frac{t_{min}}{(1-\frac{R^{2}}{R_{0}^{2}})}\right\}^2 \cdot RdR= \frac {2 \cdot t^2}{R^2_{0} \cdot t_{min}} \cdot RdR \qquad (29)


Et en utilisant la dérivée (29) et la relation (22), on peut simplifier l'équation (23)

E(t)dt = \frac {2 \cdot u}{\bar u \cdot R_{0}^{2}} \cdot \frac{R^2_{0} \cdot t_{min}}{2 \cdot t^2}dt = \frac {2 \cdot L \cdot t_{min} \cdot t_{min}}{L \cdot t \cdot t^2}dt = \frac {\tau^2}{2 \cdot t^3}dt \qquad (30)

En incluant la fonction retardatrice du réacteur piston et en observant que le plus petit temps de séjour possible est donnée par l'équation (22), on a finalement

E(t) = \frac {\tau^2}{2 \cdot t^3} H(t-\frac{\tau}{2}) \qquad (31)
Page générée en 0.083 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise