Matrice densité - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriété

La matrice obtenue a les propriétés suivantes :

  • Elle est hermitienne, \hat \rho =\hat \rho^{\dagger} , elle peut donc être diagonalisée, et ses valeurs propres sont positives.
  • Sa trace est égale à 1, Tr(\hat A) =1 , conservation de la probabilité totale.
  • Elle doit être définie positive ou nulle.
  • Dans le cas d'un état pur, l'opérateur densité est alors un projecteur : \hat \rho^2 = \hat \rho .
  • Tr(\rho^2) \le 1 , avec égalité si et seulement si le système physique est dans un état pur (c'est-à-dire que tous les pi sont nuls sauf un).

Valeur moyenne

On peut calculer la valeur moyenne d'une observable A à partir de la formule :

 \langle \hat A \rangle = \langle \Psi |\hat  A | \Psi \rangle = Tr(\hat A \hat \rho) = Tr(\hat \rho \hat A)

avec \hat \rho = \sum_i^N p_i \hat \rho_i est la matrice densité d'un mélange statistique d'états.

Evolution avec le temps

L'évolution temporelle du vecteur d'état est donné par l'équation de Schrödinger dépendante du temps :

 \hat H \left| \Psi (t)\right\rangle = i \hbar {d\over dt} \left| \Psi (t) \right\rangle
Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise