Les méthodes composites de chimie quantique sont des méthodes de chimie numérique dont le but est d'obtenir une grande précision par combinaison des résultats de plusieurs calculs. Cette combinaison est constituée à partir de méthodes d'un haut niveau théorique avec une base restreinte et de méthodes employant des niveaux plus bas de théorie avec des bases plus étendues. Elles sont communément utilisées pour le calcul des quantités thermodynamiques telles que les enthalpies de formation, les énergies d'atomisation, les énergies d'ionisation et les affinités électroniques. Leur but est d'atteindre la précision chimique qui est définie de manière usuelle comme étant la valeur expérimentale à une kilocalorie par mole près. La première chimie modèle systématique de ce type avec une large application, proposée par John Pople, fut appelée Gaussian-1 (GA). Elle fut rapidement remplacée par la version Gaussian-2 (G2) qui fut employée de manière intensive. La Gaussian-3 (G3) fut proposée après.
La méthode G2 utilise sept types de calculs :
Les différentes variations de l'énergie sont considérées comme étant additionnelles, l'énergie de combinaison est donnée par :
Le deuxième terme corrige les effets induits par les fonctions de polarisation, le troisième terme ceux induits par les fonctions de diffusion. Le terme final corrige l'erreur induite par la plus grande base avec les termes des étapes 2, 3 et 4 en empêchant les doubles contributions. Deux corrections finales sont effectuées sur l'énergie ainsi obtenue. La ZPVE est multipliée par 0,8929. Une correction empirique (correction de haut niveau, en anglais high level correction - HLC) est ensuite effectuée pour tenir compte des facteurs non considérés précédemment. Elle est donnée par -0,00481×(nombre d'électrons « de valence ») - 0,00019×(nombre d'électrons non appariés). Les deux valeurs sont obtenus par calibrage des résultats par rapport aux valeurs expérimentales pour un ensemble de composés. La ZPVE austée et la HLC sont ajoutées pour obtenir l'énergie finale. Pour certains composés contenant des éléments de la troisième période (Ga-Xe), un terme supplémentaire est ajouté pour tenir compte du couplage spin-orbite.
Plusieurs variantes de cette procédure ont été utilisées. Ainsi, ne pas faire les étapes 3 et 4 et se baser exclusivement sur les résultats MP2 de l'étape 5 est moins coûteux en temps de calcul et seulement un peu moins précis. Cette procédure constitue la méthode G2MP2. Parfois la géométrie structurale est obtenue par la théorie de la fonctionnelle de la densité (par exemple avec une méthode B3LYP), ou on remplace la méthode QCISD (T) de l'étape 1 par une méthode de cluster couplé CCSD(T).
La méthode G3 est similaire à la méthode G2, mais tient compte des résultats obtenus par la méthode G2. Dans la méthode G3, la base 6-311G est remplacée par la 6-31G, plus petite. Les calculs MP2 finaux utilisent une base plus grande, souvent appelée G3large, et corrèle tous les électrons et non plus seulement les électrons « de valence » comme dans la méthode G2. Cette modification introduit des contributions de corrélation du cœur à l'énergie finale. La HLC conserve la même forme mais les paramètres empiriques sont modifiés.
Une méthode Gaussian-4 a été proposée. Une alternative aux méthodes Gaussian-n est la méthode composite de cohérence de corrélation.