Nombre taxicab - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, le nième nombre taxicab, noté Ta(n) ou Taxicab(n), est défini comme le plus petit nombre qui peut être exprimé comme une somme de deux cubes positifs non nuls de n façons distinctes à l'ordre des opérandes près. Hardy et E. M. Wright démontrèrent en 1954 que de tels nombres existent pour tous les entiers n ; néanmoins, leur preuve n'indique pas comment les construire.

Nombres Taxicab connus

\begin{matrix}\operatorname{Ta}(2)&=&1729&=&1^3 + 12^3 \\&&&=&9^3 + 10^3\end{matrix}
\begin{matrix}\operatorname{Ta}(3)&=&87539319&=&167^3 + 436^3 \\&&&=&228^3 + 423^3 \\&&&=&255^3 + 414^3\end{matrix}
\begin{matrix}\operatorname{Ta}(4)&=&6963472309248&=&2421^3 + 19083^3 \\&&&=&5436^3 + 18948^3 \\&&&=&10200^3 + 18072^3 \\&&&=&13322^3 + 16630^3\end{matrix}
\begin{matrix}\operatorname{Ta}(5)&=&48988659276962496&=&38787^3 + 365757^3 \\&&&=&107839^3 + 362753^3 \\&&&=&205292^3 + 342952^3 \\&&&=&221424^3 + 336588^3 \\&&&=&231518^3 + 331954^3\end{matrix}
\begin{matrix}\operatorname{Ta}(6)&=&24153319581254312065344&=&582162^3 + 28906206^3 \\&&&=&3064173^3 + 28894803^3 \\&&&=&8519281^3 + 28657487^3 \\&&&=&16218068^3 + 27093208^3 \\&&&=&17492496^3 + 26590452^3 \\&&&=&18289922^3 + 26224366^3\end{matrix}

Histoire

Ta(2) fut publié en premier par Bernard Frénicle de Bessy en 1657 et fut plus tard immortalisé par une anecdote impliquant les mathématiciens Hardy et Srinivasa Ramanujan :

« Je [G. H. Hardy] me rappelle qu'une fois en allant le voir [Ramanujan] lorsqu'il était couché et malade à Putney, j'ai été conduit dans un taxi-cab portant le n°1729, et remarquai que le nombre (7·13·19) semblait plutôt ennuyeux, et j'espérai qu'il ne fût pas un présage défavorable. « Non », me dit-il, « c'est un nombre très intéressant ; il est le plus petit nombre exprimable comme une somme de deux cubes [positifs] en deux manières différentes.  »

Les nombres taxicab postérieurs furent trouvés avec l'aide d'ordinateurs; John Leech obtint Ta(3) en 1957, E. Rosenstiel, J. A. Dardis et C. R. Rosenstiel trouvèrent Ta(4) en 1991, et David W. Wilson trouva Ta(5) en novembre 1997.

Ta(6) fut annoncé par Uwe Hollerbach sur la NMBRTHRY mailing list le 9 mars 2008..

Limites supérieures de nombres Taxicab

De tels nombres plus grands sont connus, mais on ne sait pas encore si ce sont les plus petits possibles à répondre aux exigences Taxicab.

\begin{matrix}\operatorname{Ta}(7)& \le &24885189317885898975235988544&=&2648660966^3 + 1847282122^3 \\&&&=&2685635652^3 + 1766742096^3 \\&&&=&2736414008^3 + 1638024868^3 \\&&&=&2894406187^3 + 860447381^3 \\&&&=&2915734948^3 + 459531128^3 \\&&&=&2918375103^3 + 309481473^3\\&&&=&2919526806^3 + 58798362^3\end{matrix}
\begin{matrix}\operatorname{Ta}(8)& \le &50974398750539071400590819921724352&=&299512063576^3 + 288873662876^3 \\&&&=&336379942682^3 + 234604829494^3 \\&&&=&341075727804^3 + 224376246192^3 \\&&&=&347524579016^3 + 208029158236^3 \\&&&=&367589585749^3 + 109276817387^3 \\&&&=&370298338396^3 + 58360453256^3\\&&&=&370633638081^3 + 39304147071^3\\&&&=&370779904362^3 + 7467391974^3\end{matrix}
\begin{matrix}\operatorname{Ta}(9)& \le &136897813798023990395783317207361432493888&=&41632176837064^3 + 40153439139764^3 \\&&&=&46756812032798^3 + 32610071299666^3 \\&&&=&47409526164756^3 + 31188298220688^3 \\&&&=&48305916483224^3 + 28916052994804^3 \\&&&=&51094952419111^3 + 15189477616793^3 \\&&&=&51471469037044^3 + 8112103002584^3\\&&&=&51518075693259^3 + 5463276442869^3\\&&&=&51530042142656^3 + 4076877805588^3\\&&&=&51538406706318^3 + 1037967484386^3\end{matrix}
\begin{matrix}\operatorname{Ta}(10)& \le &7335345315241855602572782233444632535674275447104&=&15695330667573128^3 + 15137846555691028^3 \\&&&=&17627318136364846^3 + 12293996879974082^3 \\&&&=&17873391364113012^3 + 11757988429199376^3 \\&&&=&18211330514175448^3 + 10901351979041108^3 \\&&&=&19262797062004847^3 + 5726433061530961^3 \\&&&=&19404743826965588^3 + 3058262831974168^3\\&&&=&19422314536358643^3 + 2059655218961613^3\\&&&=&19426825887781312^3 + 1536982932706676^3\\&&&=&19429379778270560^3 + 904069333568884^3\\&&&=&19429979328281886^3 + 391313741613522^3\end{matrix}
\begin{matrix}\operatorname{Ta}(11)& \le &2818537360434849382734382145310807703728251895897826621632&=&11410505395325664056^3 + 11005214445987377356^3 \\&&&=&12815060285137243042^3 + 8937735731741157614^3 \\&&&=&12993955521710159724^3 + 8548057588027946352^3 \\&&&=&13239637283805550696^3 + 7925282888762885516^3 \\&&&=&13600192974314732786^3 + 6716379921779399326^3 \\&&&=&14004053464077523769^3 + 4163116835733008647^3\\&&&=&14107248762203982476^3 + 2223357078845220136^3\\&&&=&14120022667932733461^3 + 1497369344185092651^3\\&&&=&14123302420417013824^3 + 1117386592077753452^3\\&&&=&14125159098802697120^3 + 657258405504578668^3\\&&&=&14125594971660931122^3 + 284485090153030494^3\end{matrix}
\begin{matrix}\operatorname{Ta}(12)& \le &73914858746493893996583617733225161086864012865017882136931801625152&=&33900611529512547910376^3 + 32696492119028498124676^3 \\&&&=&38073544107142749077782^3 + 26554012859002979271194^3\\&&&=&38605041855000884540004^3 + 25396279094031028611792^3 \\&&&=&39334962370186291117816^3 + 23546015462514532868036^3 \\&&&=&40406173326689071107206^3 + 19954364747606595397546^3 \\&&&=&41606042841774323117699^3 + 12368620118962768690237^3 \\&&&=&41912636072508031936196^3 + 6605593881249149024056^3 \\&&&=&41950587346428151112631^3 + 4448684321573910266121^3 \\&&&=&41960331491058948071104^3 + 3319755565063005505892^3 \\&&&=&41965847682542813143520^3 + 1952714722754103222628^3 \\&&&=&41965889731136229476526^3 + 1933097542618122241026^3 \\&&&=&41967142660804626363462^3 + 845205202844653597674^3\end{matrix}
Page générée en 0.164 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise