Notation des flèches chaînées de Conway - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés

Cette notation n'est pas associative. En effet :

  • 2\rightarrow 3\rightarrow 2 = 2\uparrow \uparrow 3 = 2^{2^2} = 16
  • 2\rightarrow \left(3\rightarrow 2\right) = 2^{3^2} = 512
  • \left(2\rightarrow 3\right)\rightarrow 2 = \left(2^3\right)^2 = 64

La chaîne X\rightarrow p\rightarrow q\,\! peut toujours être exprimée sous la forme X\rightarrow r\,\! , où r\,\! est un nombre entier considérablement plus grand que p\,\! et q\,\! .

Par conséquent :

  • Une chaîne commençant par a\,\! est une puissance de a\,\!
  • Une chaîne commençant par 1 est égale à 1, puisqu'elle s'écrira finalement 1n=1. En fait, toute chaîne contenant un 1 peut être tronquée juste avant ce 1: X\rightarrow 1\rightarrow Y = X pour toutes chaînes X et Y: Y peut se réduire à un nombre, et d'après la règle de réduction, X\rightarrow 1\rightarrow n se réécrit en X.
  • Une chaîne commençant par 2\rightarrow 2\,\! est de la forme 2\rightarrow 2\rightarrow p\,\! et donc égale à 4 (voir ci-dessous)/

Les cas les plus simples avec quatre nombres sont :

  • a\rightarrow b\rightarrow 2\rightarrow 2 = a\rightarrow b\rightarrow a^b\,\!
  • a\rightarrow b\rightarrow 3\rightarrow 2 = a\rightarrow b\rightarrow \left(a\rightarrow b\rightarrow a^b \right)

Si pour une chaîne X\,\! on définit la fonction f(n)=X\rightarrow n\,\! , alors X\rightarrow p\rightarrow 2 = f^p(1)\,\! (voir Composition de fonctions).

Nombre de Graham

Le nombre de Graham G\,\! — qui est en 2004 le plus grand nombre jamais utilisé dans une démonstration mathématique pertinente — ne peut pas être exprimé de façon succincte dans la notation de Conway, mais si l'on définit la fonction f(n)=3\rightarrow 3\rightarrow n\,\! , alors :

  • G=f^{64}(4)\,\! et
  • 3\rightarrow 3\rightarrow 64\rightarrow 2 < G < 3\rightarrow 3\rightarrow 65\rightarrow 2\,\!

Il est possible de prouver le deuxième point :

3\rightarrow 3\rightarrow 64\rightarrow 2\,\!

= 3\rightarrow 3\rightarrow (3\rightarrow 3\rightarrow (\ldots 3\rightarrow 3\rightarrow (3\rightarrow 3)\rightarrow 1\ldots )\rightarrow 1)\rightarrow 1\,\! (3), avec 128 fois le chiffre 3
= 3\rightarrow 3\rightarrow (3\rightarrow 3\rightarrow (\ldots 3\rightarrow 3\rightarrow (3\rightarrow 3)\ldots ))\,\! (1)
= f^{64}(1)\,\!

De même, 3\rightarrow 3\rightarrow 65\rightarrow 2 = f^{65}(1) = f^{64}(27)\,\!

Comme f\,\! est strictement croissante, f^{64}(1) < f^{64}(4) < f^{64}(27)\,\! , ce qui conduit à l'inégalité recherchée.

On peut noter que la simple expression 3\rightarrow 3\rightarrow 3\rightarrow 3\,\! est largement plus grande que le nombre de Graham.

Fonction d'Ackermann

La fonction d'Ackermann peut être exprimée à l'aide de la notation de Conway :

A(m, n) = (2 \rightarrow n+3 \rightarrow m-2)-3\,\! pour m>2\,\!

et donc :

2 \rightarrow n \rightarrow m = A(m+2,n-3)+3\,\! pour n>2\,\!

(les cas n=1\,\! et n=2\,\! peuvent être considérés en posant A(m,-2)=-1\,\! et A(m,-1)=1\,\! ).

Page générée en 0.100 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise