Lorsqu'un rayonnement électromagnétique — comme une émission radar — se propage dans un plasma conducteur, les ions et les électrons sont déplacés en raison des champs électriques et magnétiques qui varient dans le temps. Le champ électromagnétique transmet de l'énergie aux particules, puis les particules rendent une partie de l'énergie gagnée au champ, mais une autre part de cette énergie est absorbée de façon définitive comme la chaleur dans des réactions de vaporisation ou de résonance, ou encore transférée par conversion en un autre type de rayonnement ou dans des réactions non–linéaires. Un plasma peut — du moins en principe — absorber toute l'énergie d'un rayonnement incident et c'est là que réside la clef de son utilisation dans le domaine de la furtivité. En tout état de cause, l'usage des plasmas en aéronautique permet une réduction sensible de la SER, ce qui rend la détection plus difficile, mais toutefois pas impossible. Cependant, la simple détection d'un avion par un radar ne suppose pas une précision suffisante pour l'intercepter ou ajuster un tir de missiles. En outre, la réduction de la SER réduit d'autant la portée efficace des radars ce qui permet à l'avion d'être plus proche de son objectif avant d'être détecté.
La grande question est la fréquence du signal radar incident. Un plasma va se comporter comme un simple réflecteur en–deçà d'une certaine fréquence qui dépend des propriétés du plasma. Ce phénomène est très commode pour les communications à longue distance car les émissions radio basse fréquence se réfléchissent entre la Terre et les couches ionisées de l'atmosphère (ionosphère) et peuvent ainsi parcourir d'importantes distances. Les radars trans–horizon d'alerte avancée utilisent cette propriété. En revanche, la plupart des radars militaires embarqués ou de défense aérienne fonctionnent sur supra-hautes fréquences (SHF) pour lesquelles beaucoup de plasmas, ionosphère comprise, absorbent ou transmettent le rayonnement. L'usage des ondes SHF pour les communications avec les satellites montrent bien qu'au moins quelques fréquences pénètrent la ionosphère.
Idéalement, le plasma entourant un avion devrait être capable d'absorber toute radiation incidente, et, du coup, d'éviter toutes réflexions des parties métalliques de l'avion ; dans ces conditions l'avion serait effectivement invisible pour un radar. Un plasma devrait aussi pouvoir être employé pour modifier les échos et ainsi tromper le système radar de détection. Par exemple, en changeant la fréquence de l'onde réfléchie on tromperait le filtrage Doppler et on rendrait l'écho très difficile à distinguer du bruit.
Le contrôle des propriétés du plasma est très important si on veut utiliser un plasma comme agent de furtivité, et également pour ajuster en temps réel sa densité, sa température, ou encore son champ magnétique pour pouvoir envisager sérieusement de mettre en échec une détection radar. Malgré cela les radars qui peuvent facilement changer leur fréquence d'émission seront moins gênés par les systèmes de contre-mesure à plasma. De la même façon que l'usage des matériaux absorbant radar, les systèmes à plasma ne sont pas une panacée dans le domaine de la furtivité.
La technologie de la furtivité plasma doit encore faire face à d'autres problèmes techniques. Par exemple :
En conclusion, on peut considérer que la technologie plasma permet au moins de réduire la SER de la plupart des surfaces réfléchissantes d'un avion comme les ailettes des réacteurs, les prises d'air ou les stabilisateurs.