Le radar est un système qui utilise les ondes radio pour détecter et déterminer la distance et/ou la vitesse d'objets tels que les avions, bateaux, ou encore la pluie. Un émetteur envoie des ondes radio, qui sont réfléchies par la cible et détectées par un récepteur, souvent situé au même endroit que l'émetteur. La position est estimée grâce au temps de retour du signal et la vitesse est mesurée à partir du changement de fréquence du signal par effet Doppler.
Le radar est utilisé dans de nombreux contextes : en météorologie, pour le contrôle du trafic aérien, pour la surveillance du trafic routier, par les militaires, en astronautique, etc. Le mot lui-même est un néologisme provenant de l'acronyme anglais : RAdio Detection And Ranging, que l'on peut traduire par « détection et estimation de la distance par ondes radio », « détection et télémétrie radio », ou plus simplement « radiorepérage ».
Cet acronyme d'origine américaine a remplacé le sigle anglais précédemment utilisé : "RDF" (Radio Direction Finding). Depuis, le mot est entré dans la langue usuelle, perdant donc son écriture de sigle. Le mot "radar" est un acronyme mais aussi un palindrome.
En 1864, James Clerk Maxwell décrit les lois de l’électromagnétisme, ce qui permet pour la première fois de travailler sur leur source. En 1888, Heinrich Rudolf Hertz montre que les ondes électromagnétiques sont réfléchies par les surfaces métalliques. Au début du XXe siècle, le développement de la radio et de la TSF (par Marconi, entre autres) permet de développer les antennes nécessaires à l'utilisation du radar.
Plusieurs inventeurs, scientifiques, et ingénieurs ont contribué ensuite au développement du concept du radar. Les fondements théoriques datent de 1904 avec le dépôt du brevet du « Telemobiloskop » (Reichspatent Nr. 165546) par l'allemand Christian Hülsmeyer. Celui-ci a démontré la possibilité de détecter la présence de bateaux dans un brouillard très dense. En envoyant une onde à l'aide d'une antenne multipolaire, son système notait le retour depuis un obstacle avec une antenne dipolaire sans pouvoir cependant en définir plus qu'un azimut approximatif et aucunement sa distance. C'était donc le RAD (radio détection) mais pas le AR (azimut et rayon).
Il faut ensuite résoudre les problèmes de longueur d’onde et de puissance soulevés en 1917 par Nikola Tesla. Durant les années 1920, on commence donc les expériences de détection avec des antennes. En 1934, faisant suite à une étude systématique du magnétron, des essais sur des systèmes de détection par ondes courtes sont menés en France par la CSF (16 et 80 cm de longueur d'onde) selon les principes de Tesla. Un brevet est déposé ([brevet français n° 788795]). C'est ainsi que naissent les « radars » à ondes décimétriques. Le premier équipa en 1934 le cargo Orégon, suivi en 1935 par celui du paquebot Normandie.
En 1935, faisant suite à un brevet déposé par Robert Watson-Watt (l’inventeur dit « officiel » du radar) (brevet anglais GB593017), le premier réseau de radars est commandé par les Britanniques et portera le nom de code Chain home. Le Hongrois Zoltán Lajos Bay a produit un autre des premiers modèles opérationnels en 1936 dans le laboratoire de la compagnie Tungsram (Hongrie). L’Allemagne nazie et les Américains ont également poursuivi des recherches dans ce domaine.
On peut considérer que l'architecture des radars était quasiment finalisée à l'aube de la Seconde Guerre mondiale. Il manquait cependant l'expérience opérationnelle au combat qui a poussé les ingénieurs à trouver de nombreuses améliorations techniques. Ainsi, les radars aéroportés ont été développés pour donner la possibilité à l'arme aérienne de procéder aux bombardements et à la chasse de nuit. On mena également des expériences sur la polarisation.
Lors de l'utilisation du radar de manière opérationnelle, les opérateurs ont constaté la présence d'artéfacts. Par exemple, les opérateurs des radars micro-ondes des armées alliées remarquèrent du bruit dans les images. Ces bruits s'avérèrent être des échos venant de précipitations (pluie, neige, etc.), constat qui a mené au développement des radars météorologiques après la fin des combats. Sont également mis au point les premières techniques de brouillage et de contre-mesures électroniques.
Depuis cette guerre, les radars sont utilisés dans de nombreux domaines allant de la météorologie à l'astrométrie en passant par le contrôle routier et aérien. Dans les années 1950, l'invention du radar à synthèse d'ouverture a ouvert la voie à l'obtention d'images radar à très haute résolution. En 1965, Cooley et Tuckey (re)découvrent la transformée de Fourier rapide qui a pris tout son intérêt surtout lorsque l'informatique a commencé à devenir suffisamment performante. Cet algorithme est à la base de la plupart des traitements radar numériques d'aujourd'hui.