Schiste bitumineux - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications et produits

L’industrie utilise l’huile de schiste comme carburant dans les centrales thermiques, en le brûlant comme du charbon afin d’entraîner les turbines à vapeur ; certaines de ces centrales emploient la chaleur produite pour le chauffage urbain. D’importantes centrales électriques fonctionnant au schiste bitumineux sont en service en Estonie. Le pays à une capacité de 2 967 mégawatts, d’autres, comme la Chine, possèdent une puissance de 12 MW, Israël 12,5 MW et l’Allemagne 9,9 MW.

En plus de son utilisation en tant que carburant, le schiste bitumineux peut également être utilisé dans la fabrication de fibres carbones, charbons activés adsorbants, noir de carbone, phénols, résines, colles, produits de tannage, mastic, bitume routier, ciment, briques, blocs de construction ou de décoration, additifs, fertilisants, laine de roche isolante, verre et produits pharmaceutiques. Mais ces usages demeurent faibles ou encore à l’étape expérimentale. L’extraction de certains schistes bitumineux produit également des sous-produits comme le soufre, l’ammoniaque, l’alumine, la soude, l’uranium et la nahcolite (hydrogénocarbonate de sodium). Entre 1946 et 1952, un schiste à dictyonema (fossile appartenant à la classe des graptolites) d’origine marine servit à la production d’uranium à Sillamäe en Estonie. Et entre 1950 et 1989, la Suède utilisa le schiste d’alun dans le même but. Le gaz de schiste bitumineux peut également devenir un substitut au gaz naturel, mais à ce jour, cet usage n’est pas économiquement viable.

L’huile de schiste dérivée des schistes bitumineux ne peut pas se substituer directement aux applications du pétrole brut. En effet, elle peut contenir des concentrations plus élevées d’alcènes, d’oxygène et de nitrogène que le pétrole brut. Elle peut également contenir des niveaux plus élevés de sulfure ou d’arsenic. En comparaison avec le WTI (West Texas Intermediate), norme de référence du pétrole brut sur le marché à terme, le schiste bitumineux de Green River contient 0 à 4,9 % de sulfure (0,76 % en moyenne) alors le WTI n’en contient que 0,42 % au maximum. Les schistes bitumineux de Jordanie peuvent contenir jusqu’à 9,5 % de sulfure. La teneur en arsenic, par exemple, est un problème dans l'huile de schiste issue de la formation de Green River. Cette concentration élevée nécessite un traitement important de l’huile (hydro-désulfurisation) avant son utilisation comme matière première dans les raffineries pétrolières. Le processus d’autoclavage hors-sol produit une huile de schiste ayant une densité API plus faible que le processus in-situ. L’huile de schiste est plus adaptée à la production de distillats moyens tels que le kérosène, le jet fuel et le diesel. La demande pour ce type de distillats, et plus particulièrement les diesels, a rapidement augmenté durant les années 1990 et 2000. Cependant, un processus de raffinage approprié, équivalent à de l’hydrocracking, peut transformer l’huile de schiste en essence légère.

Industrie

Consommation et applications

Installation expérimentale de schiste bitumineux in-situ de Shell, bassin de Piceance Creek, Colorado, États-Unis

Dès 2008, l'industrie utilise le schiste bitumineux au Brésil, en Chine, en Estonie et, dans une moindre mesure, en Allemagne, en Israël et en Russie. Des pays ont commencé à évaluer leurs réserves ou à construire des usines expérimentales alors que d'autres sortaient de ce secteur industriel.

Le schiste bitumineux est utilisé pour la production de pétrole au Brésil, en Chine et en Estonie ; pour la production d'énergie en Chine, Estonie, Israël et Allemagne ; pour la production de ciment en Estonie, Allemagne et Chine ; et dans l'industrie chimique en Chine, Estonie et Russie. En 2009, 80 % du schiste bitumineux utilisé à travers le monde est extrait en Estonie.

Par le passé, la Roumanie et la Russie avaient construit des centrales énergétiques alimentées par du schiste bitumineux, mais elles ont depuis été fermées ou converties en centrales au gaz par exemple. La Jordanie et l'Egypte planifient de construire des centrales alimentées par du schiste bitumineux alors que le Canada et la Turquie prévoient de le brûler conjointement à du charbon pour fabriquer de l'électricité. Il n'y a qu'en Estonie que cette matière première sert de carburant principal à la production d'électricité. Par exemple, la centrale de Narva a procuré 95 % de la production d'électricité en 2005.

Extraction et transformation

Processus d'extraction de l'huile de schiste

La plupart des exploitations de schistes bitumineux comprennent l’extraction puis l’envoi de la matière première. Celle-ci est soit directement brûlée pour produire de l’électricité, soit transformée. Les méthodes les plus communes d’extractions minières à ciel ouvert sont l’open pit mining et le strip mining. Elles consistent à ôter tous les matériaux recouvrant le schiste bitumineux afin de l’exposer à l’air libre mais ne sont applicables que lorsque le gisement est proche de la surface. L’exploitation minière souterraine emploie généralement la méthode dite « par chambres et piliers » qui consiste à creuser des galeries qui se croisent perpendiculairement, suffisamment proches pour pouvoir extraire une portion du gisement et ne laisser que des « piliers » qui seront abandonnés tels quels ou détruits. L’extraction des composants du schiste bitumineux a généralement lieu à l’air libre (ex-situ) même si plusieurs technologies nouvelles parviennent à le faire sous terre (in-situ). Dans les deux cas, le processus chimique de pyrolyse convertit le kérogène contenu dans le schiste bitumineux en huile de schiste (pétrole non conventionnel) et gaz. Les processus de transformation impliquent généralement de chauffer en l’absence d’oxygène et à une température suffisamment élevée (environ 450 à 500°C) pour que le kérogène se décompose en gaz, pétrole et résidus solides. Si le processus de décomposition commence à des températures relativement basses (300°C), il s’effectue plus rapidement et plus complètement à plus haute température.

Le processus in-situ permet de chauffer le schiste bitumineux sous terre. Ce type de technologie peu potentiellement extraire plus de pétrole d’une surface donnée que les processus ex-situ puisqu’il peut accéder à des niveaux plus profonds. De nombreuses sociétés ont des méthodes déposées pour l’autoclavage in-situ. Cependant, la plupart de ces méthodes sont encore en phase expérimentale. On peut distinguer les processus « réellement in-situ » (True in-situ process – TIS) et les processus de « modification in-situ » (MIS). Le processus TIS n’implique pas l’extraction du schiste bitumineux. En revanche, le processus MIS implique d’extraire une partie de la matière première et de la remonter à la surface afin qu’elle subisse le processus d’autoclavage et permette de créer la perméabilité qui fera monter le gaz dans des cheminées de gravats. Les explosifs permettront de transformer les dépôts de schiste bitumineux en gravats.

Des centaines de brevets pour l’autoclavage du schiste bitumineux existent ; cependant, seule une douzaine a déjà été testée. En 2006, seuls quatre technologies sont utilisées de manière commerciale : processus Kiviter, processus Galoter, Fushun et Petrosix.

Page générée en 0.255 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise