Suite (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Remarque

L'usage (fréquent dans les articles de cette encyclopédie) du mot séquence est une mauvaise traduction de l'anglais sequence. La bonne traduction est suite.

Suites particulières

Suites de Cauchy

Dans ce paragraphe, on supposera que ( \mathbb E,d) est un espace métrique.

Une suite (u_n)_{n \in \mathbb N} est dite de Cauchy lorsque : \forall \eta \in \mathbb R^*_+ ,  \exist N \in \mathbb N tels que :  \forall p \in \mathbb N ,  \forall q \in \mathbb N , p \ge N et q \ge N \Rightarrow d(u_p,u_q)\le\eta

On démontre que

  • Toute suite convergente est une suite de Cauchy.
  • Toute suite de Cauchy est bornée.

On appelle espace complet un espace où toute suite de Cauchy est convergente.

Suites extraites

Soit  (u_n)_{n \in \mathbb N } une suite à valeurs dans un espace  E\, .

Si  \mathbb N \rightarrow \mathbb N , n \mapsto \sigma(n) est une fonction strictement croissante (une telle fonction s'appelle une extractrice), on dit que la suite  (u_{\sigma(n)})_{n \in \mathbb N } est une suite extraite (ou sous-suite) de la suite  (u_n)_{n \in \mathbb N } .

Grosso modo, c'est la suite  (u_n)_{n \in \mathbb N } pour laquelle on n'a gardé que certains termes (une infinité quand même).

Ces suites extraites se révèlent intéressantes quand on cherche à déterminer des valeurs d'adhérence.

Suites équivalentes et suites négligeables

Définition

Soient (u_n)_{n \in \mathbb N} et (v_n)_{n \in \mathbb N} deux suites à valeurs réelles. (u_n)_{n \in \mathbb N} et (v_n)_{n \in \mathbb N} sont équivalentes si et seulement si

  • \exists ({\varepsilon}_n)_{n \in \mathbb N} telle que  \lim_{n \to \infin} ({\varepsilon}_n) = 0
  •  \exists N \in \mathbb N tel que  \forall n \geq N, u_n = v_n. (1 + {\varepsilon}_n)

On note alors  u_n \sim v_n

Remarque Si  v_n \ne 0 à partir d'un certain rang, alors  u_n \sim v_n si et seulement si  \lim_{n \to \infin} {{u_n} \over {v_n}} = 1

Définition

Soient (u_n)_{n \in \mathbb N} et (v_n)_{n \in \mathbb N} deux suites à valeurs réelles. On dit que (u_n)_{n \in \mathbb N} est négligeable devant (v_n)_{n \in \mathbb N} si et seulement si :

  • \exists ({\varepsilon}_n)_{n \in \mathbb N} telle que  \lim_{n \to \infin} ({\varepsilon}_n) = 0 et  \ u_n = \varepsilon_n v_n , ce qu'on note un = o(vn)

Remarque Si  v_n \ne 0 à partir d'un certain rang, alors un = o(vn) si et seulement si  \lim_{n \to \infin} {{u_n} \over {v_n}} = 0

Exemple

Considérons  u_n = {1 \over n^2} et  v_n = {1 \over n}
Posons  {\varepsilon}_n = {1 \over n} On a alors :

  •  u_n = {\varepsilon}_n. v_n
  •  \lim_{n \to \infin} {1 \over n} = 0

D'où  {1 \over n^2} = o \left({1 \over n}\right) et  {1 \over n^2} +{1 \over n}\sim{1 \over n}

Page générée en 0.112 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise