Suite (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples de suites

Suite arithmétique

C'est une suite à valeurs dans un groupe additif, définie par récurrence par

 \begin{cases} u_{n_0} = a\\ \forall n \geq n_0, \quad u_{n+1} = u_n + r \end{cases}

r est une constante. Son terme général est alors

 u_n = a + (n - n_0)r\,

Suite géométrique

C'est une suite à valeurs dans un monoïde, définie par récurrence par

 \begin{cases} u_{n_0} = a\\ \forall n \geq n_0, \quad u_{n+1} = qu_n \end{cases}

q est une constante. Son terme général est alors

 u_n = a q^{n - n_0}\,

Suites arithmético-géométriques

C'est une suite à valeurs dans un corps, définie par récurrence par

 \begin{cases} u_{n_0} = U\\ \forall n \geq n_0, \quad u_{n+1} = au_n + b \end{cases}
  • Si a = 1, la suite est arithmétique
  • Si  a\ne 1 , son terme général est alors
 u_n = \frac{b}{1-a}  + a^{n - n_0} \left(U - \frac{b}{1-a}\right)

Suites récurrentes linéaires à coefficients constants

Une suite récurrente linéaire est définie par une relation de récurrence :

 u_{n+p} = a_0u_n + a_1u_{n+1} + \cdots+ a_{p-1}u_{n+p-1}

a0, a1, …ap − 1 sont p scalaires (a0 non nul). L’entier p est appelé l’ordre de la récurrence. Les suites à récurrence linéaire d’ordre 1 sont les suites géométriques ; une suite récurrente linéaire d’ordre 2 célèbre est la suite de Fibonacci. L’étude des suites récurrentes linéaires d’ordre p fait appel à la notion d’espace vectoriel et au calcul matriciel, et on dispose de méthodes permettant le calcul du terme général de n'importe quelle suite de ce type.

Quelques suites célèbres

Il est assez surprenant que ce soit dans l'univers des suites d'entiers que l'on trouve les suites les plus célèbres :

  • la suite de Fibonacci où chaque terme est la somme des deux termes qui le précèdent et dont on connaît le terme général et sa relation avec le nombre d'or
  • la suite de Conway, piège de test de QI, où chaque terme est la description à voix haute du terme précédent
  • la suite de Syracuse ou de Collatz définie par une relation de récurrence simple : le terme suivant est obtenu en prenant, ou bien la moitié du terme précédent si celui-ci est pair, ou bien le triple du terme précédent augmenté de un si celui-ci est impair. Le comportement de cette suite reste encore une énigme pour les mathématiciens.

Notations

Soit A une partie de \mathbb N . Soit u \in E^A une suite d'éléments de E. Nous notons un l'image u(n) de l'entier n par u.

Ainsi, les images de 0, 1, 2, \dots, n sont notées u_0, u_1, u_2, \dots, u_n .

On dit que un est le terme de rang n, ou d'indice n de la suite u.

Nous notons en général la suite u : (u_n)_{n \in A} qui est donc une application.

Lorsque A = \mathbb N , nous notons plus simplement la suite : (u_n) \, .

Lorsque A = \mathbb N_n = [1, n] \cap \N = \{1, 2, \dots, n\} , nous pouvons noter la suite (u_k)_{1 \le k \le n} ou encore (u_1, u_2, \dots, u_n) .

L'ensemble des suites d'éléments de E indexées par une partie A de \mathbb N se note \mathcal F\left(A, E\right) ou EA.

Remarque

Nous ne devons pas confondre la suite u = (u_n)_{n \in \mathbb N} avec l'ensemble des valeurs de la suite \{u_n / n \in \mathbb N \} qui est l'image directe de \mathbb N par u. Par exemple, considérons la suite \left((-1)^n\right) , l'ensemble des valeurs de la suite est { − 1,1}.

Exemples

La suite nulle est la suite dont tous les termes sont nuls :

\left(0, 0, 0, 0, \dots \right) .

Plus généralement, si (un) est une suite et que  \exists N \in \mathbb N \quad \forall n \geq N \quad u_n = 0 , alors on dit que (un) est une suite « presque nulle », ou « nulle à partir d'un certain rang », ou encore « cofinale à zéro ».

Pour des raisons de commodité, pour tout élément k de E on peut identifier k et la suite :

\left(k, k, k, \dots \right)

Posons \forall n \in \mathbb N, u_n={1 \over {n+1}} ; u = (u_n)_{n \in \mathbb N} est la suite des inverses des nombres entiers. Celle-ci peut être représentée par:

\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \cdots \right)

Terme général et récurrence

Une suite étant une application de A (partie de \mathbb N ) dans E , il est intéressant, voire primordial, de connaître l'image de n pour tout n de A. Si un est donné comme expression de n et permet un calcul direct du nombre, on dit que l'on connait le terme général de un.

Cependant, si A = \{n \in \mathbb N, n \geq n_0\} , la nature de l'ensemble de départ permet de définir la suite par une relation de récurrence : le terme d'indice n est donné comme fonction de n et des termes d'indices k, kn. La propriété de récurrence permet d'affirmer qu'il suffit alors de donner u_{n_0} pour en déduire tous les termes. En pratique, la détermination de u_n\, va nécessiter le calcul de tous les termes de u_{n_0} à u_{n-1}\, , soit une opération bien longue. En programmation, cette récurrence a donné lieu à la création des fonctions récursives. Une partie de la recherche sur les suites va consister à déterminer le terme général d'une suite connaissant sa relation de récurrence.

Exemple : la suite définie par u0 = 1 et, pour tout entier n, un + 1 = (n + 1)un est la suite des factorielles : un = n!

Somme des termes d'une suite

Si E est un groupe additif, on note :

\sum_{n = p}^{q}u_n

ou

\sum_{p \le n \le q}u_n

la somme :

u_p + u_{p+1} + \cdots + u_q


Voir aussi : Série (mathématiques).

Page générée en 0.141 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise