Il existe seulement un système de racines de rang 1 constitué de deux vecteurs différents de zéro
![]() |
![]() |
Système de racines A1×A1 | Système de racines A2 |
![]() |
![]() |
Système de racines B2 | Système de racines G2 |
Si
En général, les systèmes de racines irréductibles sont précisés par une famille (indiquée par une lettre de A à G) et le rang (indiqué par un indice). Il existe quatre famille infinies (appelées les systèmes de racines classiques) et cinq cas exceptionnels (les systèmes de racines exceptionnels) :
Pour démontrer ce théorème de classification, on peut utiliser les angles entre les paires de racines pour encoder le système de racines dans un objet combinatoire plus simple, le diagramme de Dynkin, nommé en l'honneur de Eugene Dynkin. Les diagrammes de Dynkin peuvent alors être classés selon l'arrangement donné ci-dessus.
À chaque système de racines est associé un graphe (probablement avec un bord particulièrement marqué) appelé le diagramme de Dynkin lequel est unique à un isomorphisme près. Le diagramme de Dynkin peut être extrait du système de racines en choisissant un ensemble de racines simples.
Les sommets du diagramme de Dynkin correspondent aux vecteurs dans
Bien qu'un système de racines donné possède plus d'une base, le groupe de Weyl agit transitivement sur l'ensemble des bases. Par conséquent, le système de racines détermine le diagramme de Dynkin. Étant donnés deux systèmes de racines avec le même diagramme de Dynkin, nous pouvons faire coïncider les racines, démarrant avec les racines dans la base, et montrer que les systèmes sont en fait les mêmes.
Ainsi, le problème de classification des systèmes de racines se réduit au problème de classification des diagrammes de Dynkin possibles, et le problème de classification des systèmes de racines irréductibles se réduit au problème de classification des diagrammes de Dynkin connectés. Les diagrammes de Dynkin encodent le produit intérieur sur E en termes de base
Diagramme | Nom du groupe |
---|---|
![]() | An |
![]() | Bn |
![]() | Cn |
![]() | Dn |
![]() | E6 |
![]() | E7 |
![]() | E8 |
![]() | F4 |
![]() | G2 |