Théorème de Bachet-Bézout - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Extension aux anneaux principaux quelconques

L'identité de Bézout peut s'écrire non seulement dans l'anneau des nombres entiers relatifs, mais aussi dans tout autre anneau principal. Notons que dans ce cas « plus grand diviseur » s'entend seulement au sens de la relation d'ordre fournie par la divisibilité dans l'anneau , l'unicité du pgcd n'est conservée qu'à un facteur inversible près de l'anneau. C'est-à-dire, si A est un anneau principal, et a et b sont des éléments de A non tous nuls, et d est un plus grand diviseur commun de a et b , alors il existe des éléments x et y dans A tels que :

ax + by = d

Dans un anneau principal, un PGCD de a et b est un générateur de aA + bA, l'identité de Bézout est une conséquence de cette définition.

Identité de Bézout dans l'ensemble des polynômes

L'identité de Bézout se généralise à l'ensemble des polynômes à une indéterminée sur un corps commutatif K

Théorème —  Étant donné une famille finie \left(P_i\right)_{i\in I} de polynômes non tous nuls de \mathbb{K}[X] , si Δ est un PGCD de la famille \left(P_i\right)_{i\in I} , il existe une famille \left(A_i\right)_{i\in I} de polynôme de \mathbb{K}[X] telle que \Delta = \sum_{i\in I} A_iP_i

En particulier, les polynômes \left(P_i\right)_{i\in I} sont premiers entre eux (dans leur ensemble) si et seulement s'il existe une famille \left(A_i\right)_{i\in I} de polynômes de \mathbb{K}[X] telle que 1 = \sum_{i\in I} A_iP_i .

Extension à d'autres anneaux

L'identité de Bachet-Bézout a donné lieu à une classe d'anneaux : un anneau A est dit de Bézout si tout idéal de type fini de A est principal . Bien entendu l'identité de Bézout est valable dans tout anneau de Bézout.

Page générée en 0.120 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise