Théorème de Cantor-Bernstein - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le théorème de Cantor-Bernstein, également appelé théorème de Cantor-Schröder-Bernstein, est un théorème de la théorie des ensembles. Il est nommé en l'honneur des mathématiciens Georg Cantor, Felix Bernstein et Ernst Schröder. Cantor en donna une première démonstration, mais qui utilisait implicitement l'axiome du choix. Bernstein et Schröder en donnèrent des démonstrations qui ne dépendaient pas de cet axiome.

Historique

Georg Cantor l'énonce dans son livre Sur les fondements de la théorie des ensembles transfinis mais ne le démontre pas. Felix Bernstein, élève de celui-ci en esquisse une démonstration dès 1896 à l'âge de 18 ans. Elle est publiée en 1898 sur proposition de Cantor dans Leçons sur la théorie des fonctions sous la plume d'Émile Borel. Ernst Schröder le démontre également dans un article daté de la même année, cette démonstration étant cependant considérée comme imparfaite.

Richard Dedekind en fit lui-même une démonstration en 1897 mais qui ne fut publiée qu'en 1930. Ernst Zermelo en fait une autre en 1906 qui reprend en fait les idées de Dedekind.

Démonstration n°1

Lemme préliminaire

Commençons par montrer que si u est une application injective d'un ensemble A vers une de ses parties, B, alors il existe une bijection v de A sur B.

Soit (C_n)_{n \in \mathbb N} la suite définie par :

\left\{\begin{matrix} C_0 = A\setminus B \\ \forall n \in \mathbb{N}^*, C_n = u( C_{n-1} ) \end{matrix} \right.

Soit C la réunion de tous les ensembles (C_n)_{n \in \mathbb N}  : C=\bigcup_{n \in \mathbb N}C_n

Soit alors v l'application de A dans B définie par :

\begin{matrix}v: & x \in C & \mapsto & u(x)\\ & x \notin C& \mapsto & x \end{matrix}

v est bien définie à valeurs dans B, car u est à valeur dans B, et si x \notin C alors x \notin C_0 et donc x \in B .

v envoie injectivement C dans u(C)=\cup_{n\in\N}u(C_n)=\cup_{m\in\N^*}C_m\subset C et le complémentaire de C dans lui-même. C'est donc une injection.

Montrons que v est surjective. Soit y \in B . Montrons qu'il existe un x \in A tel que v(x) = y.

  • Si y \in C
alors il existe i \in \mathbb{N}^* tel que y \in C_i . (i est strictement positif car y \in B , donc y \notin C_0 ).
Il existe donc x \in C_{i-1} \subset C tel que v(x) = u(x) = y.
  • Si y \notin C
alors v(y) = y

Donc v est bijective. Ce qui démontre la première proposition.

Interprétation

On peut donner une interprétation concrète du résultat montré ci-dessus. A est l'ensemble (infini) des spectateurs d'un théâtre (infini). Chaque spectateur a réservé une place, et initialement, on suppose que chaque place est occupée par un spectateur, mais pas forcément par le spectateur qui a réservé cette place. B est alors l'ensemble des spectateurs assis. Par ailleurs, les ensembles étant infinis, il peut rester des spectateurs debout. L'application u est l'application qui, à un spectateur x associe le spectateur y = u(x) assis à la place de x.

C0 est l'ensemble des spectateurs initialement debout. Ces spectateurs se rendent à leur place et délogent leur occupant. Ceux-ci forment alors l'ensemble C1. Ces derniers procèdent de même. Cn désigne les spectateurs debout à la n-ème étape. Ils vont aux places qu'ils ont réservé et en chassent leurs occupants. On itère une infinité de fois. C désigne l'ensemble des spectateurs qui se sont levés au moins une fois (y compris ceux qui étaient debout initialement).

L'application v désigne l'application, qui, à un spectateur x qui doit se lever, associe le spectateur y qu'il va déloger, ou bien qui, à un spectateur x qui reste toujours assis, associe x lui-même. L'application réciproque de v est l'application, qui, à un spectateur y qui est dérangé, associe le spectateur x qui vient prendre sa place, ou bien qui, à un spectateur y jamais dérangé, associe y lui-même.

Démonstration finale du théorème

Montrons alors le théorème initial.

Soit B = g(F) l'image de F par l'injection g. L'application u = g f est une injection de E dans B, avec B \subset E . Donc il existe une bijection v de E sur B. Comme g est une injection et g(F)=B, elle définit par restriction une bijection h de F sur B. La composée h-1v est une bijection de E sur F, ce qui démontre le théorème de Cantor-Bernstein.

Page générée en 0.160 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise