Test (statistique)
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Principe d'un test statistique

Le but d'un test statistique est de tester une hypothèse concernant un ensemble de données.

Exemple

On dispose de N réalisations d'une loi que l'on sait normale (espérance μ et variance ( En statistique et en probabilité, variance En thermodynamique, variance ) 1), on désire tester l'hypothèse :

  • H0 : μ = 0

contre :

  • H1 : \mu \ne 0

Calculons T_{emp} = \frac{\sum_{i=1}^{N+1} x_i}{\sum(x_i-\frac{1}{N}\sum_{i=1}^N x_i)^2}.

Sous l'hypothèse H0, nous connaissons la distribution de cette statistique (La statistique est à la fois une science formelle, une méthode et une technique. Elle comprend la collecte, l'analyse, l'interprétation de données ainsi que la présentation...). Nous pouvons alors évaluer sa vraissemblance en calculant une p-value : p_{value} = P^{H_0}[T \ge T_{emp}]

Différents types d'erreurs

Dans la pratique, les tests statistiques conduisent à deux types d'erreurs :

  • Rejet à tort de l'hypothèse H0 : erreur de première espèce (Dans les sciences du vivant, l’espèce (du latin species, « type » ou « apparence ») est le taxon de base de la systématique. L'espèce est un concept flou dont il existe une...).
  • Acceptation à tort de l'hypothèse H0 : erreur de seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. ...) espèce.

Il est alors possible de contrôler α, le taux d'erreur de première espèce :

  • Si pvalue < α : On rejette H0
  • Si pvalue > α : On accepte H0

Remarque : Dans les livres Statistiques il est marque que Rejet de Ho ssi pvalue < α [1]

D'après Gujarati [2] la pvalue est le niveau significatif le plus bas où l'hypothèse nulle peut-être rejetée (traduction faite par mes soins, il se peut qu'elle ne soit pas exacte à 100 %) ainsi donc si pvalue > α alors on ne rejette pas

Schématiquement : Soit α = 5%

Si P-Value = 0,03 :
0%---1%---2%---3%---4%---5%---6%---7%---8%---9%---10%
]...Non Rejet..[...............Rejet...............[
Hors à 5%, on rejette --> RHo

Si P-Value = 0,05 :
0%---1%---2%---3%---4%---5%---6%---7%---8%---9%---10%
].......Non Rejet........[..........Rejet..........[
Hors à 5%, on a le niveau le plus bas qu'on rejette, ce niveau est compris dans le test --> RHO

Si P-Value = 0,07 :
0%---1%---2%---3%---4%---5%---6%---7%---8%---9%---10%
]............Non Rejet.............[.....Rejet.....[
Hors à 5%, on ne rejette pas --> Non rejet de Ho (ce qui est différent d'acceptation de Ho qui dépendra du test de seconde espèce)

Liste des tests statistiques

Test du T

  • H0 : μ = μ0
  • H1 : μ > μ0

Test du U

  • H0 : μ = μ0
  • H1 : μ > μ0

Test du U

  • H0 : π = p0
  • H1 : π > p0

Test du χ2

  • H0 : σ>2 = σ02
  • H1 : σ>2 > σ02

Test du U

Test du U

Test du F

Test du χ2

Test du T

Test de Fisher-Student

Test de Spearman

Tests non paramétriques

Test de Mann-Whitney

Le test de (Wilcoxon-) Mann-Whitney est un test non paramétrique d'identité portant sur deux échantillons indépendants issus de variables numériques ou ordinales.

Ces deux jeux peuvent contenir des nombres différents d'observations (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés. Le plaisir procuré explique la très grande...), ou même faire référence à deux variables différentes.

1) C'est un test d'identité : il porte sur le fait que deux séries de valeurs numériques (ou ordinales) sont issues d'une même distribution.

2) Il est non paramétrique, c'est à dire qu'il ne fait aucune hypothèse sur les formes analytiques des distributions F1(x) et F2(x) des populations 1 et 2. Il teste donc l'hypothèse :

H0 : "F1 = F2"

3) Il utilise non pas les valeurs prises par les observations, mais leur rangs une fois ces observations réunies dans un même ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui...).

 
 de tester une hypothèse concernant un ensemble de données (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un événement, etc.). 
 

Exemple [modifier]

On dispose de N réalisations d'une loi que l'on sait normale (espérance μ et variance 1), on désire tester l'hypothèse :

Le test de Mann-Whitney a donc le même objectif qu'un autre test d'identité important, le "Test du Chi-2 d'identité", dans sa version pour variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un...) numérique (Une information numérique (en anglais « digital ») est une information ayant été quantifiée et échantillonnée,...). Si les populations sont supposées normales et de même variance, le test t aura la préférence.

Le test de Kruskal-Wallis peut être perçu comme une extension du test de Mann-Whitney à plus de deux échantillons (de même que ANOVA univariée est une extension du test t à plus de deux échantillons).

Test du signe

Test de Wilcoxon

R_\alpha(n) = \frac{n(n+1)}{4}- u_{1-\alpha/2}\sqrt{\frac{1}{24}n(n+1)(2n+1)}

R_\alpha(n) = \frac{n(n+1)}{4}- u_{1-\alpha}\sqrt{\frac{1}{24}n(n+1)(2n+1)}

Page générée en 0.052 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique