Arrangement (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

La notion d'arrangement est utilisée en probabilités, et notamment pour les dénombrements en analyse combinatoire.

Considérons un ensemble formé de n éléments. On prend k éléments (k < n) et on en constitue une liste ordonnée sans répétition possible, c'est-à-dire dans laquelle l'ordre des éléments est pris en compte (si l'on permute deux éléments de la liste, on a une liste différente, et un élément ne peut être présent qu'une seule fois). Une telle liste ordonnée est appelée un arrangement. Le nombre d'arrangements que l'on peut faire est noté A^k_n et vaut :

A^k_n = n (n-1)(n-2) ... (n-k+1)

Cette formule peut se comprendre à l'aide d'un arbre des choix successifs, puisque le premier élément est choisi parmi n, le second parmi (n-1) ... et le dernier parmi (n-k+1). Avec la notation factorielle, où n! = 1×2×...n, cette formule devient

A^k_n = \frac{n!}{(n-k)!}

Akn est en fait le nombre d'injections que l'on peut faire d'un ensemble à k éléments vers un ensemble à n éléments. Le nombre d'arrangements est lié au coefficient binomial {n \choose k} (anciennement C^k_n ) par :

{n \choose k} = \frac{A^k_n}{k!}

Exemples d'arrangements :

  • une phrase sans répétition de mot est un arrangement du dictionnaire ;
  • une association forme son bureau (président, trésorier, secrétaire) à partir des membres de l'association ; le bureau est un arrangement de l'association ;
  • le podium d'une course est un arrangement de l'ensemble des participants.
Page générée en 0.075 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise