Argument de la diagonale de Cantor - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Hypothèse du continu

La démonstration ci-dessus montre que l'ensemble des nombres réels est « strictement plus grand » que l'ensemble des nombres entiers. On peut se poser la question de savoir s'il existe un ensemble dont la cardinalité est strictement plus grande que celle de \mathbb{N} mais strictement plus petite que celle de \mathbb{R} . L'hypothèse qu'il n'y en a pas, due à Cantor, est appelée hypothèse du continu.

De même la question de savoir s'il existe un ensemble de cardinalité comprise strictement entre card(S) et card(P(S)), pour un ensemble S infini quelconque, conduit à l'hypothèse du continu généralisée.

Page générée en 0.080 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise