Calculateur quantique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Réalisations physiques

Un ordinateur quantique pourrait être implémenté à partir de toute particule pouvant avoir deux états à la fois excités et non excités au même moment. Ils peuvent être construits à partir de photons présents à deux endroits au même moment, ou à partir de protons et de neutrons ayant un spin positif, négatif ou les deux en même temps tant qu’ils ne sont pas observés.

Contraintes physiques

On pourrait imaginer utiliser une molécule microscopique, pouvant contenir plusieurs millions de protons et de neutrons, comme ordinateur quantique. Celui-ci contenant plusieurs millions de qubits. Mais le calcul quantique exige du système qui le porte deux contraintes fortes pour être utilisable :

  • il doit être totalement isolé du monde extérieur pendant la phase calcul (on parle alors de calcul adiabatique), toute observation ou tout effacement de données perturbant le processus. On ne le laisse communiquer à l’extérieur qu’avant (introduction des données) et après (lecture des résultats, ou plus exactement du résultat) ; l’isolement thermique total ne peut exister, mais si l’on arrive à le maintenir le temps du calcul, celui-ci peut avoir lieu sans interférence. Ce phénomène d’interférence est appelé décohérence, c’est le principal obstacle à la réalisation d’un calculateur quantique. Le temps de décohérence correspond pour un système quantique au temps pendant lequel ses propriétés quantiques ne sont pas corrompues par l’environnement.
  • il doit se faire sans la moindre perte d’information. En particulier tout circuit de calcul quantique doit être réversible. Dans les circuits logiques "classiques" certaines portes ne vérifient pas cette propriété (porte NAND par exemple). Cependant des astuces de construction permettent de contourner cette difficulté en conservant des informations supplémentaires non directement utiles. Toutes les portes classiques ont un équivalent quantique.

Il existe des systèmes quantiques isolés naturellement comme les noyaux de certains atomes. Certains, comme le carbone 13, possèdent un moment cinétique, un spin, et peuvent donner lieu à différents états quantiques. Les cristaux de diamant qui contiennent des isotopes du carbone 12 (les noyaux du diamant sont composés jusqu’à 1 % de noyaux de carbone 13) permettraient théoriquement à température ambiante de stocker et de manipuler de l’information quantique. Une première technique consiste à manipuler par laser le spin des électrons d’un atome d’azote constituant les impuretés du diamant, et ainsi agir sur le couplage entre le spin de ces électrons et celui des noyaux du carbone 13.

Projets en cours

De nombreux projets sont en cours à travers le monde pour construire concrètement des qubits viables et les réunir dans un circuit. Ces recherches mettent en œuvre de la physique théorique pointue. Les projets suivants semblent avancer à un rythme intéressant :

  • les circuits supraconducteurs avec jonction Josephson. Cette technique est très malléable : il s’agit de dessiner des circuits suffisamment résistants à la décohérence. Pour l’instant elle ne permet de coupler qu’au plus deux qubits, mais des recherches sont en cours pour en coupler davantage à l’aide d’un résonateur et d’un SQUID.
  • Les ions piégés. Cette technique a donné le système possédant le plus de qubits intriqués.
  • la Résonance magnétique nucléaire.
  • les atomes provenant d’un condensat de Bose-Einstein piégés dans un réseau optique.
  • les cavités optiques ou micro-ondes résonantes.
  • les boîtes quantiques (quantum dots en anglais) : ce sont des systèmes macroscopiques qui possèdent malgré tout les caractéristiques quantiques nécessaires pour l’élaboration d’un ordinateur quantique. On appelle parfois de tels systèmes des atomes artificiels. Cette technique utilise des matériaux courants dans l’industrie des semi-conducteurs : silicium ou arséniure de gallium . Elle se subdivise en deux branches : l’une exploitant la charge électrique des qubits, l’autre leur spin (voir l’article spintronique).
  • beaucoup d’autres projets plus ou moins avancés.

Certains projets semblent très en phase avec une exploitation industrielle, mais les problèmes de base restent les mêmes. Des recherches sont ainsi entreprises pour réaliser un ordinateur quantique à base solide, comme le sont nos microprocesseurs actuels. Ces recherches ont entre autres mené l’université du Michigan à une puce de calcul quantique capable d’être fabriquée en série, sur les lignes de productions existant actuellement. Qui plus est, cette puce permet en effet d’isoler un ion et de le faire « léviter » dans un espace confiné, à l’intérieur de la puce.

Page générée en 0.118 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise