Coefficient binomial - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définition algébrique des coefficients binomiaux d'entiers

Le coefficient binomial des entiers naturels n et k est noté {n \choose k} ou  C_n^k et vaut :

\frac{n (n -1)(n - 2)\cdots (n - k +1)}{k!} = \begin{cases}\displaystyle \frac{n!}{k!(n-k)!} & \mbox{si } k \in [\![0;n]\!] \quad\mbox{(1)} \\\qquad 0 & \mbox{sinon}\end{cases}

Ici n ! désigne la factorielle de n. On remarque qu'il existe deux notations : le coefficient binomial de n et k s'écrit

  • C_n^k\, ou C(n,k)\, et se lit « combinaison de k parmi n » ou aussi « cnk »,
  • ou bien {n \choose k} et se lit « k parmi n ».

Une importante relation, la formule de Pascal, lie les coefficients binomiaux :

 {n \choose k} + {n \choose k+1} = {n+1 \choose k+1} \qquad \mbox{(2)}

Elle donne lieu au triangle de Pascal qui permet un calcul rapide des coefficients pour de petites valeurs de n :

      ligne 0:    1      ligne 1:    1   1      ligne 2:    1   2   1      ligne 3:    1   3   3   1      ligne 4:    1   4   6   4   1      ligne 5:    1   5   10  10  5   1      ligne 6:    1   6   15  20  15  6   1      ligne 7:    1   7   21  35  35  21  7   1      

Les coefficients {n \choose k}, k \in [\![0;n]\!] figurent à la ne ligne. Le triangle est construit en plaçant des 1 aux extrémités de chaque ligne et en complétant la ligne en reportant la somme des deux nombres adjacents de la ligne supérieure. Cette méthode permet le calcul rapide des coefficients binomiaux sans division ni multiplication.

Note : pour k \in [\![0;n]\!] , le coefficient binomial est un nombre entier.

Généralisations

L'écriture de {n \choose k} , pour tout entier n et tout entier k compris entre 1 et n, sous la forme

{n \choose k} = \frac{\prod_{i=0}^{k-1}(n-i)}{k!}

permet d'envisager une extension possible aussi pour tout entier n négatif et tout entier k strictement positif en utilisant l'expression suivante :

{n \choose k} = \frac{\prod_{i=0}^{k-1}(n-i)}{k!}

Si l'on pose n=-m, on a la relation suivante :

{-m \choose k} ={m+k-1\choose k}(-1)^k

C'est cette forme des coefficients binomiaux qui est utilisée dans la formule du binôme négatif ainsi que dans la définition de la loi binomiale négative


Pour tout nombre complexe z et tout entier naturel k, on définit le coefficient binomial {z \choose k} de la manière suivante :

{z \choose k} = \frac{z(z-1)(z-2)\cdots (z-k+1)}{k!}

C'est cette forme des coefficients binomiaux qui est utilisée dans la formule du binôme généralisée.

Pour tout entier k, l'expression {z \choose k} est un polynôme en z de degré k à coefficients rationnels. Tout polynôme p(z) de degré d peut réciproquement être écrit sous la forme  p(z) = \sum_{k=0}^{d} a_k {z \choose k}  ; on aboutit ainsi, par exemple, aux formules de Faulhaber.

Une autre généralisation importante des coefficients binomiaux part de la formule du multinôme, laquelle permet de définir les coefficients multinomiaux.

Enfin, le calcul de {n \choose k} peut se généraliser, à l'aide de la fonction Gamma. On remarque que, pour tout entier naturel n, n! = Γ(n + 1), ainsi, l'on a, pour tout entier n et pour tout entier k inférieur ou égal à n,

 {n \choose k} = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)}

Comme la fonctionΓ est définie pour tout complexe de  \C^* - \mathbb Z^- , on peut généraliser le coefficient binomial à tous complexes s et t différents des entiers négatifs et tels que s - t ne soit pas un entier négatif, par la formule :

 {s \choose t} = \frac{\Gamma(s+1)}{\Gamma(t+1)\Gamma(s-t+1)} ;

Cette formule peut d'ailleurs s'écrire plus simplement à l'aide de la fonction bêta :

 {s \choose t} = \frac{1}{(s+1)\Beta(t+1,s-t+1)} ;

On peut tenter d'unifier les définitions avec la fonction Gamma, en résolvant le problème de pôles de cette fonction par un passage à la limite :

 {s \choose t} =\lim_{u\to s}\lim_{v \to t} \frac{\Gamma(u+1)}{\Gamma(v+1)\Gamma(u-v+1)}

Mais il faut prendre garde à l'ordre des limites qui ne peuvent commuter et cette définition conduit à une valeur infinie du coefficient binomial dans les cas non étudiés précédemment

Page générée en 0.112 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise