Cycle du phosphore - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Cycle terrestre

Le phosphore minéral contenu dans les roches ignées du sol se trouve à l’état insoluble (phosphate de calcium, de fer, d’aluminium par exemples) à des pH inférieurs à 6 ou supérieurs à 7. Sous cette forme, le phosphate est inexploitable par les consommateurs primaires telles que les plantes en milieu terrestre. Pour que cela soit faisable, les roches phosphatées doivent être dissoutes dans les eaux interstitielles des sols à des pH compris entre 6 et 7, ou bien par altération des roches phosphatées affleurantes à la surface terrestre. Sous forme dissoute, le phosphore se transforme en ions phosphate tel le PO43- qui peut se présenter sous différentes formes conjuguées comme l'ion hydrogénophosphate : HPO42- pouvant lui-même se conjuguer pour donner l'ion dihydrogénophosphate : H2PO4-. Ces mêmes eaux doivent ensuite être lessivées dans les eaux continentales, où le phosphore sous forme dissoute est mis à disposition des plantes. C’est ainsi que le phosphore fait son entrée dans le cycle terrestre.

De là, les eaux contenant le phosphore dissout peuvent soit s’écouler dans les océans et rejoindre de cycle marin du phosphore, soit se restreindre à un cycle exclusivement terrestre (du moins jusqu’à un retour à l’état insoluble dans le sol).

Dans ce dernier cas, les écoulements continentaux observent un cycle annuel, dans lequel le phosphore sous forme dissoute atteint son maximum au printemps, moment où la biocœnose en est la plus demandeuse. Cette concentration des ions phosphate dans les eaux printanières vient de l’accumulation des alluvions et vases en milieu lacustre suite à la stratification hivernale, lorsque l’inversion printanière produit l’homogénéisation thermique de la masse d’eau concernée.

Une fois les ions phosphates absorbés par les plantes autotrophes, le phosphore est intégré dans les différents niveaux de réseaux trophiques, allant des consommateurs jusqu’aux décomposeurs, et devient donc du phosphate organique. Le retour à la terre de ce phosphate organique se fait par sédimentation de la matière organique morte et des excréments des animaux, grâce à l’action combinée des organismes saprophages et des micro-organismes décomposeurs. On obtient alors du phosphore sous forme d’orthophosphates minéraux.

Dans le cas où le phosphore a rejoint le milieu marin, le retour à la terre se fera de deux manières différentes :

  • La sédimentation de la matière organique phosphatée dans les fonds océaniques permet le passage du phosphore de la biosphère aux roches phosphatées fossilisées. Celles-ci rejoignent ensuite les sols continentaux par le biais de la tectonique des plaques, notamment par le phénomène de l’orogenèse.
  • La consommation du phosphore par la faune marine (cf. cycle du phosphore en milieu marin) rend cette dernière riche en l’élément phosphore. Les activités de pêcherie ainsi que les dépôts de guano par les oiseaux marins (grands consommateurs d’organismes marins) permettent ainsi le retour du phosphore en milieu terrestre.

Apport anthropique et eutrophisation

Le principal problème causé par le phosphore est l’eutrophisation des milieux aquatiques, notamment des lacs.

Un excès d’azote, de phosphore et de carbone rejoint le lac via un cours d’eau ou via son bassin versant. Ce phosphore minéral peut avoir des origines multiples : Il peut provenir des amendements, issus de l’agriculture intensive, qui sont ajoutés aux sols pour améliorer la croissance des cultures. Le phosphore de ces amendements est originaire de l’exploitation des gisements de craie phosphatée. Il peut être issu des effluents de STEP (station d'épuration), qui ne subissent pas de déphosphatation. Ce phosphore-là provient notamment des lessives et des rejets humains.

Ces apports en excès de phosphore conduisent à une hyperfertilisation du milieu, qui augmente la production primaire. En effet, on assiste à un bloom phytoplanctonique conduisant à un bloom zooplanctonique. Lors de leur mort, ces organismes tombent et sont minéralisés par les bactéries minéralisatrices. Plus le bloom est important, plus ces bactéries vont se développer, et plus la demande en O2 sera importante pour les phénomènes de respiration et de minéralisation. De plus, des macrophytes (des lentilles d’eau par exemple) se développent en surface et jouent le rôle de barrière à la lumière pour les cyanobactéries et le phytoplancton. La consommation d’O2 devient supérieure à la production d’O2. Ceci entraîne donc une raréfaction d’O2 dans les fonds, et à moyen-terme l’anoxie du milieu. À cela, s’ajoute la libération de phosphore par les sédiments. En effet, pour les lacs oligotrophes ou mésotrophes, le phosphore dissout se complexe avec le fer oxydé et est stocké dans les sédiments. Or, en absence d’O2, ce fer est réduit et ne peut, d’une part, plus se complexer avec le phosphore présent, mais d’autre part, libère celui qui était initialement stocké. Le lac reçoit alors un apport supplémentaire en phosphore dissout qui ne fait qu’alimenter le phénomène d’eutrophisation. L’absence d’O2 engendre la mort de nombreux êtres vivants qui utilisent l’O2 pour respirer, ainsi que l’apparition de composés réducteurs et de gaz toxiques pour la vie aquatique tels que le méthane et les thiols.

Dans les océans, la faune marine et la pêche ne remontent plus le phosphore des zones mortes vers le milieu terrestre. La remontée du phosphore vers le milieu terrestre se fait alors essentiellement par orogenèse. Celle-ci étant extrêmement lente, elle ne compense pas les pertes de phosphore du milieu terrestre. Les activités humaines favorisent ainsi l'ouverture du cycle du phosphore.

Pour palier au phénomène d’eutrophisation, plusieurs solutions existent. En tout premier lieu, les apports en amont peuvent être réduits, notamment les amendements dont l’utilisation pourrait être raisonnée. Certaines pratiques agricoles, comme la culture sans labour, limitent l'érosion des sols. De même, les effluents de STEP qui peuvent subir une déphosphatation lors de leur traitement. Des méthodes physiques sont aussi efficaces comme l’aération des fonds et le dragage des sédiments.

Page générée en 0.108 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise