Loi de Hubble - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Valeur de la constante de Hubble

La valeur actuelle de la constante de Hubble est aujourd'hui (2006) mesurée à 72 km⋅s-1⋅Mpc-1 (72 kilomètres par seconde et par mégaparsec), avec une incertitude d'environ 10 % (soit 8 km⋅s-1⋅Mpc-1). Ce résultat est obtenu de façon consistante par de nombreuses méthodes :

  • La méthode historique de Hubble à l'aide de céphéides ;
  • Des méthodes similaires basées sur l'utilisation de supernovae de type Ia et de type II ;
  • L'étude du plan fondamental des galaxies ;
  • L'étude des décalages des fluctuations de luminosité des images multiples des quasars dont plusieurs images sont produites par des effets de lentille gravitationnelle.

La valeur actuelle est considérablement plus basse que la valeur initiale trouvée par Hubble (de l'ordre de 500 km⋅s-1⋅Mpc-1). L'erreur commise par Hubble était due à une mauvaise estimation de la magnitude absolue des céphéides, aujourd'hui considérablement mieux connue (voir mesure des distances en astronomie).

Interprétation physique de la loi de Hubble

Si l'on se restreint à l'application de la loi de Hubble dans l'univers local (quelques centaines de millions d'années lumière), alors il est tout à fait possible d'interpréter la loi de Hubble comme un mouvement des galaxies dans l'espace. Néanmoins, la loi énonçant une vitesse de récession apparente proportionnelle à la distance, son extrapolation conduit à conclure que des galaxies suffisamment lointaines s'éloignent de nous à une vitesse plus grande que la vitesse de la lumière, en contradiction apparente avec la relativité restreinte. De fait, ce n'est pas dans le cadre de la relativité restreinte que l'on doit appliquer la loi de Hubble, mais celui de la relativité générale. Celle-ci stipule entre autres que le concept de vitesse relative entre deux objets (deux galaxies distantes, par exemple), est un concept purement local : on ne peut mesurer la différence de vitesse entre deux objets que si leur trajectoires sont « suffisamment proches » l'une de l'autre. Il convient bien sûr de préciser ce dernier terme, qui en l'occurrence dit essentiellement que la notion de vitesse relative n'a de sens que dans une région de l'espace-temps qui peut être correctement décrite par une métrique de Minkowski. Il est en effet possible de montrer (voir Expansion de l'univers) que l'échelle de longueur au-delà de laquelle on ne peut plus décrire localement un espace en expansion par une métrique de Minkowski est précisément le rayon de Hubble, soit la distance au-delà de laquelle les vitesses de récession apparentes sont précisément relativistes.

L'interprétation en termes de mouvement dans l'espace décrit par la relativité restreinte devient donc précisément invalide au moment où surgit le paradoxe d'une vitesse de récession supérieure à la vitesse de la lumière. Ce paradoxe est résolu dans le cadre de la relativité générale qui permet d'interpréter la loi de Hubble non pas comme un mouvement dans l'espace, mais une expansion de l'espace lui-même. Dans ce cadre-là, le postulat d'impossibilité de dépassement de la vitesse de la lumière fréquemment (et improprement) employé en relativité restreinte se reformule de façon plus exacte en énonçant qu'aucun signal ne peut se déplacer à une vitesse supérieure à celle de la lumière, les vitesses étant localement mesurées par des observateurs dans des régions où l'espace peut être décrit par la relativité restreinte (soit à petite échelle).

Page générée en 0.114 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise