Avant Einstein |
Avec Einstein |
En physique des particules |
Méta |
La relativité restreinte est la théorie formelle élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe que la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels inertiels, ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là avec « l'espace absolu » de Newton et l'éther).
La relativité galiléenne stipule, en langage moderne, que toute expérience faite dans un référentiel inertiel se déroulerait de manière parfaitement identique dans tout autre référentiel inertiel. Devenue « principe de relativité », son énoncé sera ensuite modifié par Einstein pour être étendu aux référentiels non-inertiels : de « restreinte » la relativité deviendra « générale ».
La théorie de la relativité restreinte a établi de nouvelles formules permettant de passer d'un référentiel galiléen à un autre. Les équations correspondantes conduisent à des phénomènes qui heurtent le sens commun (mais qui ont tous été confirmés expérimentalement), un des plus étonnants et des plus célèbres étant connu sous le nom de paradoxe des jumeaux (un paradoxe qui a été parfois utilisé en science-fiction).
La relativité restreinte a eu également un impact en philosophie en éliminant toute possibilité d'existence d'un temps et de durées absolues dans l'ensemble de l'univers (Newton) ou comme cadre a priori de notre expérience (Kant). À la suite de Henri Poincaré, elle a forcé les philosophes à se poser différemment la question du temps et de l'espace.
En mécanique newtonienne, les vitesses s'ajoutent, c'est la relativité galiléenne : si d'une fusée se déplaçant à la vitesse de 7 km/s par rapport à la Terre on tire un boulet de canon vers l'avant à la vitesse de 1 km/s par rapport à la fusée, la vitesse du projectile par rapport à la Terre sera de 8 km/s. Si le boulet est tiré vers l'arrière, sa vitesse sera de 6 km/s.
À la fin du XIXe siècle, James Clerk Maxwell établit les équations régissant les ondes électromagnétiques et notamment les ondes lumineuses. Selon cette théorie la vitesse de la lumière ne devait dépendre que des propriétés électriques et magnétiques du milieu, ce qui posait un problème dans le cas où ce milieu est le vide car cela suggère une indépendance de la vitesse de la lumière par rapport au référentiel de l'instrument de mesure : si on émet un faisceau lumineux depuis la fusée vers l'avant ou vers l'arrière, la vitesse de la lumière mesurée par rapport à la Terre sera la même, contrairement au boulet. L'hypothèse de l'éther, milieu de propagation de la lumière, donc hypothèse assez naturelle, devait enlever à la lumière cette propriété et rendre sa propagation compatible avec la relativité galiléenne. En 1887, une expérience a été conduite par Michelson et Morley pour mesurer la vitesse de la Terre par rapport à cet éther : expérience similaire à celle de la fusée évoquée ci-dessus, et où la Terre tient elle-même le rôle de la fusée. Ils voulaient mesurer cette vitesse en mettant en évidence la différence de vitesse de la lumière entre différentes directions de propagation possibles. N'ayant pas détecté une différence significative, le résultat de cette expérience s'avéra difficile à interpréter, tant et si bien que leurs auteurs allèrent jusqu'à imaginer une contraction, inexpliquée, des instruments de mesure dans certaines directions : la relativité restreinte justifiera cela par la suite.
Des formules de transformation pour passer d'un observateur à un autre furent établies par Lorentz avant 1904; il s'agissait d'équations de compatibilité dont la signification n'était pas claire aux yeux de leur auteur. D'autres physiciens avaient eu une démarche similaire plus tôt encore. Poincaré a publié des articles pour en trouver une interprétation, peu de temps avant Einstein. La répartition des rôles de tel ou tel savant dans l'émergence de la théorie de la relativité restreinte a fait l'objet d'une controverse, en particulier dans les années 2000.
En 1905, dans son article intitulé De l'électrodynamique des corps en mouvement, Albert Einstein présenta la relativité comme suit :
Les équations de Lorentz qui en découlent sont conformes à la réalité physique. Elles ont des conséquences inattendues. Ainsi un observateur attribue à un corps en mouvement une longueur plus courte que la longueur attribuée à ce même corps au repos et la durée des phénomènes qui affectent le corps en mouvement est allongée par rapport à cette « même » durée mesurée par des observateurs immobiles par rapport à ce corps.
Einstein a également réécrit les formules qui définissent la quantité de mouvement et l'énergie cinétique de manière à les rendre invariantes dans une transformation de Lorentz.
Le temps et les trois coordonnées d'espace jouant des rôles indissociables dans les équations de Lorentz, Minkowski les interpréta dans un espace-temps à quatre dimensions. Remarquons toutefois que le temps et l'espace restent de natures différentes et qu'on ne peut donc pas assimiler l'un à l'autre. Par exemple on peut faire demi-tour dans l'espace alors que cela est impossible dans le temps.
En 1912, Lorentz et Einstein furent proposés pour un prix Nobel conjoint pour leur travail sur la théorie. La recommandation était de Wien, lauréat de 1911, qui déclare que « bien que Lorentz doit être considéré comme le premier à avoir trouvé le contenu mathématique du principe de relativité, Einstein réussit à le réduire en un principe simple. On devrait dès lors considérer le mérite des deux chercheurs comme comparable ». Einstein ne reçut jamais le Nobel pour la relativité, le prix Nobel n'étant, en principe, jamais accordé pour une théorie pure. Le comité attendit donc une confirmation expérimentale. Le temps que cette dernière se présente, Einstein était passé à d'autres travaux importants.
Einstein se verra finalement décerner le prix Nobel de physique en 1921, pour ses apports à la physique théorique, et tout spécialement pour son explication de l'effet photoélectrique.