Avant Einstein |
Avec Einstein |
En physique des particules |
Méta |
L'expression vitesse relative est communément utilisée, pour exprimer la différence des vitesses de deux mobiles ou la variation dans le temps de la distance entre deux mobiles.
Elle est aussi employée pour exprimer des variations comparées par rapport au temps de quantités autres que des distances : vitesse relative de croissance (du poids, de la taille etc.).
Aussi simple qu'elle puisse apparaître au premier abord, cette notion, en fonction du contexte où elle est utilisée, nécessite des définitions précises des différents objets concrets (matériels) ou théoriques (mathématiques) qu'elle met en œuvre. De l'automobiliste qui se fait dépasser sur une autoroute par un véhicule dont il veut estimer la vitesse, jusqu'au scientifique cherchant la méthode d'accostage de deux engins spatiaux la plus économique en énergie, en passant par le navigateur vérifiant qu'il n'est pas en route de collision avec un autre navire, on imagine aisément que les méthodes de mesures et de calculs vont être différentes.
L'appréciation des distances, des vitesses de déplacement, la complexité des trajectoires, la précision des mesures et des résultats, dépendent du domaine d'application.
Si la vitesse exprime de façon générale la variation d'une quantité (autre que le temps, comme la température, la pression, le poids etc.) par rapport à une durée (écart de temps), ce qui suit ne concerne que les domaines de la cinématique et de la mécanique : mécanique newtonienne ou mécanique relativiste. Par vitesse on entendra donc distance parcourue par unité de temps. La vitesse relative étant une vitesse, elle pourra être définie, suivant les besoins, par une seule grandeur scalaire (20 km/h, 1 tour par minute) ou par plusieurs grandeurs permettant d'en préciser les caractéristiques, comme la direction et le sens. (Voir dans l'article sur la vitesse : vecteur vitesse, vitesse angulaire, vitesse aréolaire, vitesse instantanée, vitesse moyenne, vitesse curviligne.)
Les exemples qui suivent n'ont pas pour objectif d'expliciter les théories de la physique relativiste (relativité restreinte, relativité générale). Cependant l'intérêt qu'elles présentent sera abordé, quand la mécanique classique atteint ses limites de validité (en cohérence ou en précision).
Il pourra s'avérer utile de consulter les articles consacrés à certains termes scientifiques comme référentiel galiléen ou de métier, en particulier pour les exemples concernant la navigation maritime.
Le référentiel est un système qui permet d'observer et de noter (repérer) les positions successives d'un mobile dans l'espace et dans le temps, ce système étant invariant pendant la durée des observations. Un référentiel comprend donc au moins un axe d'espace (une dimension spatiale) et un axe de temps (une dimension temporelle, a priori indépendante de l'espace) qui permettent à un observateur de situer un objet (fixe ou mobile). En mécanique, les référentiels ont des définitions scientifiquement appropriées. (Voir référentiel galiléen.) Il est remarquable que la définition des référentiels est importante pour établir les formules mathématiques qui permettent de passer d'un référentiel à un autre en conservant les lois de la physique, en fonction de chacune des approches de la physique ( Lois de Newton, relativité restreinte, relativité générale, mécanique quantique).
Dans ce qui suit, le mot référentiel servira généralement à désigner un système de coordonnées spatiales (sur une dimension, un plan (2 dimensions), un volume (3 dimensions) ) et un chronomètre.