Un module sur un anneau unitaire est une structure algébrique qui généralise celle d'espace vectoriel et celle d'idéal d'un anneau.
Dans un espace vectoriel l'ensemble des scalaires forme un corps tandis que dans un module, ceux-ci sont de manière plus générale munis d'une structure d'anneau (non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats spectaculaires de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Certaines propriétés vraies pour les espaces vectoriels ne sont plus vraies pour les modules. Par exemple l'existence d'une base n'y est plus assurée, et on ne peut pas nécessairement y développer de théorie de la dimension, même dans un module engendré par un nombre fini d'éléments.
Les modules ne sont pas une généralisation inutile. Ils apparaissent naturellement dans beaucoup de situations algébriques ou géométriques. Un exemple simple est un module sur l'anneau des fonctions infiniment différentiables sur un ouvert : il est naturel de ne pas pouvoir y faire de division, puisqu'il vaut mieux éviter de diviser par 0. De la même façon, il est naturel de considérer un module sur l'anneau des polynômes à une ou plusieurs variables.
Une application linéaire f entre deux modules M et N sur un même anneau A est une fonction qui conserve la structure de module, i.e qui vérifie :
Autrement dit, une application linéaire est un morphisme de modules. Si f est bijective, on dit de plus que f est un isomorphisme. Si les modules de départ et d'arrivée M et N sont identiques, on dit que f est un endomorphisme. Si f est à la fois un endomorphisme et un isomorphisme, on dit que c'est un automorphisme.
Le noyau d'une application linéaire f est l'ensemble des éléments x de M qui vérifient f(x) = 0. C'est un sous-module de M et il est noté Ker f. On peut également définir l'image d'une application linéaire Im f = f(M) qui est un sous-module de N.
Comme dans le cas des groupes ou des anneaux, un morphisme de A-modules donne lieu à un isomorphisme , défini par
Si A est un anneau (unitaire), et (M , +) un groupe commutatif.
Si de plus, M est muni d'une loi externe de A × M dans M vérifiant, pour tous éléments a et b de A et x, y de M :
alors (M, + , ) est un A-module à gauche.
Ce qui a été défini ici est un A-module à gauche, car, dans la loi externe, les éléments de A sont placés à gauche. On pourra définir de même un A-module à droite.
Il est important de remarquer que les structures de module à gauche et à droite ne diffèrent pas uniquement par leur écriture : si les deux premiers axiomes sont les mêmes, le troisième s'écrit . Si l'on transcrivait naïvement cette égalité en écrivant les éléments de A gauche, on obtiendrait , ce qui, si A n'est pas commutatif, ne revient pas au même que l'axiome qui donne la structure de module à gauche.
Par contre, le petit raisonnement ci-dessus montre que, si l'on "inverse" la loi de A, un module à droite peut être vu comme un module à gauche. Plus précisément, notons Aop l'anneau "opposé" à A, c'est-à-dire le groupe abélien A muni de la multiplication définie par aopbop = ba, si aop et bop désignent a et b vus comme éléments de Aop. Alors, si M est un A-module à gauche, M peut être vu comme un Aop-module à droite, où l'action de Aop est définie par a.m = m.aop.
Ceci justifie que dans la suite, on puisse se restreindre à l'étude des modules à gauche.
Cette loi est la seule qui munisse un groupe abélien d'une structure de -module. Il y a donc équivalence entre la notion de -module et celle de groupe abélien.
Le premier axiome montre que, pour , l'application est un endomorphisme du groupe M. Les trois axiomes suivants traduisent quant à eux le fait que l'application est un morphisme (unitaire) de l'anneau A dans l'anneau des endomorphismes de M, noté End(M).
Réciproquement, la donnée d'un morphisme d'anneau unitaire fournit à M une structure de A-module (à gauche) via la loi . Une structure de A-module est donc équivalente à la donnée d'un morphisme .
Un tel morphisme A End(M) est appelé une représentation de A sur le groupe abélien M. Une représentation est dite fidèle si elle est injective. En termes de module, cela signifie que si pour tout , alors a = 0.
Ceci est une généralisation de ce que l'on trouve en représentation des groupes, où l'on définit une représentation d'un groupe G vers un espace vectoriel sur un corps K comme un morphisme de l'algèbre du groupe K[G] vers End(V), autrement dit, où l'on donne une structure de K[G]-module à V.
Soit E un A-module à gauche, et M une partie de E. On dit que M est un sous-module (à gauche) si les conditions suivantes sont respectées :
Autrement dit, un sous-module est une partie linéairement stable.
Exemples