Le moiré peut être utilisé en extensométrie : il suffit de tracer un réseau sur la pièce à étudier, et de superposer le réseau de référence au réseau déformé par la déformation de la pièce.
On peut également superposer une image holographique de l'objet à l'objet lui-même ; les écarts entre l'image (la référence) et l'objet sont dues à des déformations de l'objet, et ces écarts génèrent des franges claires et sombres.
Voir aussi :
Considérons une pièce de longueur l sur laquelle on trace un réseau de pas p dont les traits sont perpendiculaires à l'axe de traction.
Sous tension, la pièce a une longueur l·(1+ε), où ε est la déformation (allongement relatif). Le pas du réseau devient p·(1+ε), on a donc δp = p·ε.
On voit que l'espacement entre deux zones sombre vaut :
donc cet espacement permet de déterminer la déformation. Toutefois, la mesure de la distance entre deux sombres est imprécise, du fait de la largeur d'une zone. On peut se contenter de compter le nombre N de traits sombres que l'on voit : sur une longueur l, on a
soit
La précision est la déformation qui sépare deux apparitions de traits, soit
Dans le cas du cisaillement pur, il suffit de tracer un réseau perpendiculaire aux forces de scission. Le réseau sur la pièce déformé est alors tourné de l'angle de cisaillement γ par rapport au réseau de référence (pièce non déformée).
De même que pour la traction uniaxiale, on peut se contenter de compter le nombre de traits, à conditions que γ soit très faible, que la pièce soit rectangulaire, et que les forces soient parallèles aux côtés (les lignes claires sont alors quasiment parallèles aux côtés de la pièce).
Si la largeur de la pièce (perpendiculairement aux forces) est l, alors le nombre de traits N vaut :
soit
avec comme ci-dessus une erreur
Considérons deux réseaux de même pas p, mais désorientés d'un angle α. De loin, on voit également apparaître des lignes sombres et claires : les lignes claires correspondent aux lignes des nœuds, c'est-à-dire aux lignes passant par les points d'intersection des deux réseaux.
Si l'on considère une « maille du filet », on voit que cette maille est un losange : c'est un parallélogramme dont les côtés valent d = p/sin α (on a un triangle rectangle d'hypoténuse d et dont le côté opposé à l'angle α vaut p).
Les lignes claires correspondent à la petite diagonale du losange. Comme les diagonales sont les bissectrices des côtés adjacents, on en déduit que la ligne claire fait un angle α/2 par rapport à la perpendiculaire de chacun des réseaux.
Par ailleurs, l'espacement entre deux lignes claires est la moitié D de la grande diagonale. Cette grande diagonale 2D est l'hypoténuse d'un triangle rectangle dont les côtés de l'angle droit valent d(1+cos α) et p. D'après le théorème de Pythagore, on a :
soit
soit
Si α est très petit (α << 2π), on peut faire les approximations suivantes :
soit
α étant exprimé en radians On voit que plus α est faible, plus les lignes sont écartés ; lorsque les deux réseaux sont parallèles (α = 0), l'écart des lignes est « infini » (il n'y a pas de ligne).
On a donc deux manières de déterminer α : par l'orientation des lignes claires et par leur espacement
Si l'on choisit de mesurer l'angle, on a une erreur finale proportionnelle à l'erreur de mesure de l'angle. Si l'on choisit de mesurer la distance, on a une erreur finale inversement proportionnelle à l'erreur de distance. Donc, pour les petits angles, il vaut mieux se fier à la mesure de distance.