On désire faire produire par des bactéries une certaine protéine (protéine d'intérêt). C'est par l'intermédiaire de plasmides qu'on introduira dans des cultures de bactéries un gène codant notre protéine d'intérêt et un gène de résistance à un antibiotique X. On sélectionnera les bactéries ayant intégré les plasmides en faisant pousser les colonies bactériennes sur un milieu contenant l'antibiotique X; les bactéries n'ayant pas intégré le plasmide ne se développeront pas. Cette technique est déjà grandement utilisée pour la production de somatostatine, hormone de croissance, humaine. Avant la connaissance de cette méthode, l'hormone était récupérée sur les morts, engendrant de nombreux problèmes de transmission de pathologies non repérées sur les cadavres prélevés. Depuis que la production de celle-ci est effectuée par des bactéries modifiées génétiquement via les plasmides, les patients souffrant d'un déficit d'hormone de croissance peuvent bénéficier de ces protéines qui leur manquent sans ce risque de transmission inter-humaine. Des tests sont également en cours pour la production d'un médicament contre les troubles liés à la mucoviscidose, maladie génétique pour laquelle la biomédecine manque pour le moment de soins efficaces.
Il est également possible de produire des protéines d'intérêt par des cultures eucaryotes, mammifères en particulier. Cela présente l'avantage de disposer de la machinerie de modifications post-traductionnelles telles que la glycosilation, absente chez les procaryotes. Or pour la plupart des protéines relativement complexes, celles-ci ne deviennent bioactives qu'une fois ces modifications opérées. Il est possible d'effectuer ces modifications à l'issue d'une production par une culture procaryote, mais cela reste encore fort complexe et exigent.
Cette application est particulièrement utile en génie génétique pour le séquençage d'ADN : l'ADN d'une cellule quelconque est difficile à séquencer car il dépasse très souvent 40 000 Kb (1 Kilo base = 1 000 bases) et se trouve en faible quantité. Ainsi, pour rendre le séquençage plus facile, on découpe l'ADN à analyser et l'ADN plasmidique avec une enzyme de restriction, dans des conditions spécifiques; l'ADN à séquencer va s'intégrer dans l'ADN plasmidique et le plasmide sera transféré dans le hyaloplasme bactérien. Une fois mise en culture, la bactérie va répliquer l'ADN plasmidique (et donc le fragment à séquencer) en grande quantité. Après avoir extrait l'ADN à séquencer, et éliminé le reste d'ADN plasmidique par des enzymes de restriction, on récupère les fragments d'ADN reproduits à plusieurs milliers d'exemplaires, que l'on peut maintenant séquencer facilement.