En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donné les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »). Un processus qui possède cette propriété est appelé processus de Markov. Pour de tels processus, la meilleure prévision qu'on puisse faire du futur, connaissant le passé et le présent, est identique à la meilleure prévision qu'on puisse faire du futur, connaissant uniquement le présent : si on connait le présent, la connaissance du passé n'apporte pas d'information supplémentaire utile pour la prédiction du futur.
C'est la propriété caractéristique d'une chaîne de Markov : en gros, la prédiction du futur à partir du présent n'est pas rendue plus précise par des éléments d'information supplémentaires concernant le passé, car toute l'information utile pour la prédiction du futur est contenue dans l'état présent du processus. La propriété de Markov faible possède plusieurs formes équivalentes qui reviennent toutes à constater que la loi conditionnelle de sachant le passé, i.e. sachant est une fonction de seul :
Propriété de Markov faible « élémentaire » — Pour tout pour toute suite d'états
On suppose le plus souvent les chaînes de Markov homogènes, i.e. on suppose que le mécanisme de transition ne change pas au cours du temps. La propriété de Markov faible prend alors la forme suivante :
Cette forme de la propriété de Markov faible est plus forte que la forme précédente, et entraîne en particulier que
Dans la suite de l'article on ne considèrera que des chaînes de Markov homogènes. Pour une application intéressante des chaînes de Markov non homogènes à l'optimisation combinatoire, voir l'article Recuit simulé.
La propriété de Markov faible pour les chaînes de Markov homogènes a une autre forme, beaucoup plus générale que la précédente, mais pourtant équivalente à la précédente :
Propriété de Markov faible « générale » — Pour n'importe quel choix de
Notons que les évènements passés et futurs prennent ici la forme la plus générale possible, alors que l'évènement présent reste sous une forme particulière, et pas par hasard : si on remplace par dans l'énoncé ci-dessus, alors l'énoncé devient faux en général, car l'information sur le passé devient utile pour prévoir le présent (où peut-il bien se trouver, plus précisément, à l'intérieur de la partie ?), et, partant de là, pour prévoir le futur.
Si et on parle de marche aléatoire sur Supposons que Alors, par exemple,
alors qu'on peut facilement trouver et tels que
Ainsi, du fait d'une connaissance imprécise ( ) du présent, certaines informations concernant le passé permettent d'améliorer le pronostic : sachant que Xn-1 = 0, on en déduit que Xn n'est pas nul, donc que Xn est égal à 1, puis on conclut que Xn+1 ne peut être égal à 1. Par contre, sans l'information Xn-1 = 0, on ne peut exclure que Xn+1 soit égal à 1.
Pourtant, la marche aléatoire sur est une chaîne de Markov, et possède bien la propriété de Markov. Il n'y a pas de contradiction, ici : la propriété de Markov stipule que, lorsque l'on a une connaissance précise (Xn = i ) du présent, aucune information concernant le passé ne permet d'améliorer le pronostic.
Il existe une , liée à la notion de temps d'arrêt : cette propriété de Markov forte est cruciale pour la démonstration de résultats importants (divers critères de récurrence, loi forte des grands nombres pour les chaînes de Markov).
La propriété de Markov faible « générale » entraine que
Indépendance conditionnelle — Pour n'importe quel choix de
Cette égalité exprime l'indépendance conditionnelle entre le passé et le futur, sachant le présent (sachant que ). Cependant, si l'on compare avec la propriété de Markov faible « générale » telle qu'énoncée plus haut, on constate qu'on a perdu la propriété d'homogénéité : la propriété de Markov faible « générale » est en fait équivalente à la propriété plus forte
Indépendance conditionnelle et homogénéité — Pour n'importe quel choix de
Critère fondamental — Soit une suite de variables aléatoires indépendantes et de même loi, à valeurs dans un espace , et soit une application mesurable de dans Supposons que la suite est définie par la relation de récurrence :
et supposons que la suite est indépendante de Alors est une chaîne de Markov homogène.
Petit Pierre fait la collection des portraits des onze joueurs de l'équipe nationale de football, qu'il trouve sur des vignettes à l'intérieur de l'emballage des tablettes de chocolat Cémoi ; chaque fois qu'il achète une tablette il a une chance sur 11 de tomber sur le portrait du joueur n° (pour tout ). On note l'état de la collection de Petit Pierre, après avoir ouvert l'emballage de sa -ème tablette de chocolat. est une chaîne de Markov partant de , car elle rentre dans le cadre précédent pour le choix puisque
où les variables aléatoires sont des variables aléatoires indépendantes et uniformes sur : ce sont les numéros successifs des vignettes tirées des tablettes de chocolat. Le temps moyen nécessaire pour compléter la collection (ici le nombre de tablettes que Petit Pierre doit acheter en moyenne pour compléter sa collec') est, pour une collection de vignettes au total, de où est le -ème nombre harmonique. Par exemple, tablettes de chocolat.