Plusieurs images simultanées sont générées en utilisant des faisceaux polarisés différents, habituellement orthogonaux. Comme les cibles rencontrées (sol, feuillage, édifices, etc.) ont des propriétés polarisantes différentes, l'intensité venant des différentes ondes va varier avec le type de cibles rencontrées (matériaux, formes, mécanismes de "rebonds"). On étudie alors les différences d'intensité et de phases entre les images générées à partir de ces différentes polarisations pour en déduire des paramètres descriptifs de la scène imagée. On peut ainsi rehausser les contrastes de certains détails non visibles sur des images classiques (non polarimétriques), ou déduire des propriétés de la cible telles que le type de végétation.
On utilise simultanément deux radars à synthèse d'ouverture, ou bien le même radar est utilisé à des instants différents. On étudie alors les différences de phase point à point des images générées pour retrouver la dimension verticale du terrain. On parle alors de SAR interférométrique ou InSAR.
Cette méthode permet de générer des modèles numériques d'élévation, ou bien, en soustrayant un modèle numérique de terrain, de mesurer des déplacements centimétriques dans les zones où le signal reste cohérent (Interférométrie radar différentielle) La cohérence des zones dépend de la géométrie d'acquision des images radars, mais aussi de la nature de la zone: en bande C (ENVISAT, Radarsat) les zones urbaines sont généralement adaptées au traitement InSAR tandis que les zones couvertes de végétations sont incohérentes.
Basée sur le principe de la stéréoscopie, la radargrammétrie consiste à reconstruire le relief à partir de deux images radar de la même zone, acquises avec des angles de visée différents. Moins précise que l'interférométrie, cette méthode est toutefois moins contraignante concernant les conditions d'acquisitions.
Cependant, pour les applications les plus simples, la donnée de phase est rejetée et on obtient ainsi une carte plane en deux dimensions de la zone sondée.