En parallèle avec le cycle, le volume de PFC retiré des poumons doit être filtré, ré-oxygéné, et ajusté à la température corporelle avant d'être à nouveau insufflé. Pour cela, le respirateur liquidien doit réaliser plusieurs fonctions.
Pour insérer et retirer le PFC des poumons, il faut un système de pompage et des valves commandées électriquement pour aiguiller le PFC au sein du respirateur liquidien. Les prototypes les plus rudimentaires utilisent une seule pompe péristaltique pour l'inspiration et l'expiration. Mais, cette configuration de pompage n'est pas optimale et génère un écoulement pulsé qui induit des oscillations de pression indésirables; de plus, elle s'avère inappropriée pour la mise en œuvre de commandes avancées comme l'expiration régulée en pression. Ainsi, les prototypes les plus avancés ont recours à deux pompes à piston, une pour l'inspiration et une pour l'expiration, commandées indépendamment l'une de l'autre.
Un oxygénateur, ou échangeur gazeux, doit extraire complètement le dioxyde de carbone (CO2) contenu dans le PFC pour le remplacer par de l'air médical enrichie en O2 avant qu'il ne soit réintroduit dans les poumons. Cela peut être soit réalisé par un échangeur à membrane, comme ceux utilisés en ECMO (oxygénation par membrane extra-corporelle), soit par un échangeur à bulles.
Un mélangeur de gaz permet de doser la fraction en oxygène (FiO2) du gaz acheminé à l'oxygénateur, et donc la concentration d'oxygène dissout dans le PFC instillé dans les poumons.
La complexité d'un respirateur liquidien requiert un système temps réel raccordé à tous les capteurs et actionneurs du dispositifs ainsi qu'une interface personne-machine qui permet au clinicien de spécifier les paramètres ventilatoires et d'afficher les informations pertinentes. Comme la ventilation liquide est réalisée en mode mandatoire, c'est le respirateur qui impose les volumes, les pressions et la fréquence de la ventilation, en fonction des consignes du clinicien. Le pilotage d'un respirateur liquidien s'apparente à celui d'une ventilation mécanique conventionnelle (VMC) exceptée à la différence notable que l'expiration est active et à pression négative (en VMC elle est passive et à pression positive).
Afin de bien contrôler la quantité de PFC présent dans les poumons, la ventilation liquide est toujours contrôlée en volume (volume controlled), c'est-à-dire que les volumes inspiré et expiré sont imposés par l'appareil. Quand le clinicien ne souhaite aucune modification du volume pulmonaire, le volume inspiré est identique au volume expiré, c'est alors le volume courant usuel en ventilation mécanique conventionnelle. Si le clinicien souhaite modifier le volume de PFC dans les poumons, le système de pompage doit insuffler plus ou moins de PFC qu'on en retire.
Comme en VMC, la ventilation liquide doit être limitée en pression pour éviter la surpression de la trachée à l'inspiration, et le collapsus de la trachée à l'expiration. Ce type de protection est assurée par la mise en œuvre de limites en pression (pressure limited). En fait, dès que les seuils sont atteints, la phase en cours est interrompue et une alarme est émise.
Afin d'éviter d'atteindre les pressions limites tout en optimisant le cycle, il est possible d'utiliser les modes de ventilation de type pression régulée (pressure regulated). Dans ce cas, le respirateur liquidien commande l'instillation du volume inspiré à une pression constante de référence positive (Pref,i>0), tandis que l'extraction du volume expiré s'effectue à une pression de référence négative (Pref,e<0).
Selon cette nomenclature, un mode de ventilation liquide doit être contrôlé en volume et limité en pression; les phases inspiratoires et expiratoires peuvent être régulées en pression.
Le PFC retiré des poumons requiert les opérations suivantes en plus de l'oxygénation: