Tube de Crookes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Découverte des rayons X

Tube de Crookes à rayons X datant de 1910 environ.

Lorsque la différence de potentiel appliquée à un tube de Crookes est assez élevée (environ 5000 volts ou plus), elle peut accélérer les électrons à une vitesse assez élevée pour créer des rayons X lorsqu'ils percutent l'anode ou la paroi de verre du tube. Les électrons rapides émettent des rayons X lorsque leur trajectoire est brutalement infléchie lorsqu'ils passent à proximité de la charge électrique portée par un noyau atomique, un phénomène appelé rayonnement continu de freinage, ou alors, lorsqu'ils rencontrent les électrons « profonds » d'un atome et qu'ils les placent dans des niveaux d'énergie plus élevés, ces derniers émettent des rayons X à leur retour à leur niveau d'origine, phénomène appelé fluorescence X. De nombreux tubes de Crookes des début ont généré sans doute possible des rayons X, car les premiers chercheurs s'étant intéressés aux tubes de Crookes, comme Ivan Pulyui, avaient noté qu'ils pouvaient créer des traces nébuleuses sur des plaques photographiques placées à proximité. Le 8 novembre 1895, Wilhelm Röntgen manipulait un tube de Crookes recouvert par un carton noir lorsqu'il remarqua qu'un écran fluorescent situé à proximité scintillait faiblement Il comprit que des rayons invisibles issus du tube étaient capables de traverser le carton et de faire fluorescer l'écran. Il découvrit qu'ils pouvaient également traverser livres et papiers sur son bureau. Wilhelm Röntgen commença à étudier ces rayons à plein temps, et le 28 décembre 1895, publia son premier article sur les rayons X. Il reçut le premier prix Nobel de physique pour sa découverte.

Historique

La technologie des tubes de Crookes a évolué depuis la technologie des tubes de Geissler, des tubes expérimentaux semblables aux enseignes au néon modernes. Les tubes de Geissler présentent un vide peu poussé, d'environ 10−3 atm (100 Pa), et les électrons ne peuvent y parcourir qu'une faible distance avant de rencontrer une molécule de gaz. Le courant des électrons relève donc d'un processus de diffusion lente, avec collision permanente avec les molécules de gaz, ne pouvant jamais être très énergétique. Ces tubes ne peuvent créer de faisceaux de rayons cathodiques, mais seulement de faibles décharges luminescentes qui se produisent dans le tube lorsque les électrons entrent en collision avec les molécules de gaz, produisant de la lumière.

William Crookes et son tube scintillant devinrent notoires, comme l'indique cette caricature publiée en 1902 par Vanity Fair. La légende indiquait « ubi Crookes ibi lux », ce qui signifie à peu près en latin « où il y a Crookes, il y a de la lumière ».

William Crookes parvint à mettre ses tubes à une pression plus faible (10−6 à 5x10−8 atm) en utilisant une pompe à vide à mercure Sprengel fabriquée par son collègue Charles A. Gimingham. Il découvrit que lorsqu'il évacuait d'avantage d'air de ses tubes, un espace sombre se formait à proximité de la cathode dans le gaz scintillant. Lorsque la pression diminuait, l'espace sombre (appelé espace sombre de Crookes), grandissait le long du tube, jusqu'à ce que l'intérieur du tube devienne entièrement sombre. Cependant, l'enveloppe de verre du tube commençait à scintiller du côté de l'extrémité anode.

Le phénomène s'explique de la manière suivante. Lorsque le vide devient poussé dans le tube, il y a moins de molécules gazeuses empêchant le mouvement des électrons qui peuvent alors voyager sur une distance plus importante en moyenne avant d'en rencontrer une. Lorsque l'intérieur du tube devient sombre, ils sont capables de le traverser en ligne droite de l'anode à la cathode sans collision. Ils sont accélérés jusqu'à atteindre une vitesse élevée par le champ électrique entre les électrodes, à la fois parce qu'ils ne perdent pas d'énergie dans les collisions et parce que les tubes de Crookes requièrent des différences de potentiel plus élevées. Les vitesses atteintes lors de leur trajet vers l'anode font que les électrons dépassent l'anode et percutent le verre. Les électrons eux-même sont invisibles, mais lorsqu'ils percutent le verre, ils excitent les atomes de ce dernier et provoquent de la fluorescence (habituellement dans la gamme jaune-vert). Les expérimentateurs ont depuis amélioré la visibilité des faisceaux en peignant le fond des tubes de Crookes avec de la peinture fluorescente.

Cette fluorescence « accidentelle » a permis aux chercheurs de remarquer que les objets dans le tube, comme l'anode, projettent une ombre nette sur les parois du tube. Johann Hittorf fut le premier à comprendre en 1869 que quelque chose devait se propager en lignes droites depuis la cathode pour provoquer ce phénomène. En 1876, Eugen Goldstein prouva que ce quelque chose provenait de la cathode, et l'appela rayon cathodique (Kathodenstrahlen).

A cette époque, les atomes étaient les plus petites particules connues (l'électron était inconnu), et ce qui portait le courant électrique restait un mystère. De nombreux et ingénieux types de tubes de Crookes furent construits pour déterminer les propriétés des rayons cathodiques (voir ci-après). Les faisceaux électroniques de haute énergie permettaient de mieux comprendre ces propriétés que lorsque les électrons se déplaçaient dans des fils. Les tubes scintillants colorés étaient aussi populaires dans le cadre des conférences publiques visant à montrer les mystères de la nouvelle science de l'électricité. Des tubes décoratifs furent fabriqués avec des minéraux fluorescents ou des dessins de papillons peints avec de la peinture fluorescente à l'intérieur. Lorsque le tension était appliqué, les matériaux fluorescents brillaient avec des couleurs scintillantes.

Cependant, les tubes de Crookes ne sont pas fiables et capricieux. L'énergie et la quantité des électrons produits dépendent de la pression du gaz résiduel dans le tube. Les parois du tube absorbent ce gaz au fur et à mesure du vieillissement, réduisant la pression interne. Cela induit une réduction de la quantité de rayons cathodiques produits et induit une hausse de la différence de potentiel dans le tube, rendant les rayons cathodiques plus « durs » (plus énergétiques). En fin de compte, la pression interne devient si basse que le tube ne fonctionne plus.

Les tubes à vide électroniques inventés vers 1906 supplantèrent les tubes de Crookes. Ils fonctionnent à une pression encore inférieure, autour de 10−9 atm. (10−4 Pa), à laquelle il y a si peu de molécules gazeuses qu'elles ne peuvent conduire par ionisation. Ils utilisent au lieu de ça une source d'électrons plus fiable et contrôlable, un filament chauffé ou cathode chaude qui produit des électrons par émission thermoïonique. La méthode de création des rayons cathodiques par ionisation dans les tubes de Crookes n'est plus utilisée aujourd'hui que dans quelques tubes à gaz spécialisés comme les krytrons.

La technologie de manipulation de faisceaux d'électrons initiée par les tubes de Crookes fut appliquée de manière pratique pour la mise en forme des tubes à vide, et particulièrement pour l'invention du tube cathodique par Ferdinand Braun en 1897.

Page générée en 0.361 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise