En statistiques, le test de Kolmogorov-Smirnov est un test d'hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi.
Ce test repose sur les propriété des fonctions de répartition empirique : si
La fonction de répartition empirique est un processus qui prend ses valeurs dans l'espace des fonctions croissantes comprises entre 0 et 1. Grâce à ses propriétés, on a la convergence suivante :
pour toute constante c > 0. Le terme α(c) vaut 0.05 pour c = 1.36. Remarquons que la limite à droite ne dépend pas de F. Cela découle du fait que
Il est ainsi facile de proposer un test d'hypothèse pour décider si un échantillon provient bien d'une loi donnée, ou si deux échantillons ont la même loi, lorsque leurs fonction de répartitions sont continues.
On peut aussi considérer maxx(Fn(x) − F(x)) et maxx(F(x) − Fn(x)).
Le test de Kolmogorv-Smirnov est par exemple utilisé pour tester la qualité d'un générateur de nombres aléatoires[1].