Formule du binôme de Newton
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Le binôme de Newton est une formule de mathématiques donnée par Isaac Newton pour trouver le développement d'une puissance entière quelconque d'un binôme. Il est aussi appelé formule du binôme de Newton, ou plus simplement formule du binôme ( en mathématique, binôme, une expression algébrique ; voir aussi binôme de Newton et coefficient binomial un binôme est un groupe de deux personnes, voir Équipe en binôme...).

Énoncé

Soit un binôme composé des termes x et y défini sur un anneau (tels que xy=yx), et un entier naturel n,

(x+y)^n=\sum_{k=0}^n {n \choose k} x^{n-k} y^k

où les nombres

{n \choose k}=\frac{n!}{k!\,(n-k)!}

(parfois aussi notés C_n^k) sont les coefficients binomiaux.

Remplacer dans la formule y par -y revient à prendre le second terme comme négatif :

(x-y)^n=\Big(x+(-y)\Big)^n=\sum_{k=0}^n {n \choose k} x^{n-k} (-y)^k

Exemple :

n=2~,\qquad(x + y)^2 = x^2 + 2xy + y^2\,
n=3~,\qquad(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3\,
n=4~,\qquad(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\,

Démonstration (En mathématiques, une démonstration permet d'établir une proposition à partir de propositions initiales, ou précédemment...)

Soient x, y des éléments d'un anneau tels que xy=yx et n un entier naturel.

(x+y)^n=\sum_{k=0}^n {n \choose k} x^{n-k} y^k

Démontrons cette formule par récurrence.

Initialisation

n=0~,\qquad(x+y)^0=1={0 \choose 0}x^0y^0
n=1~,\qquad(x+y)^1= x + y ={1 \choose 0}x^1y^0 + {1 \choose 1}x^0y^1

Hérédité (L’hérédité (du latin hereditas, « ce dont on hérite ») est la transmission de caractéristiques d'une génération à la...)

Soit n un entier supérieur ou égal à 1, montrons que si la relation est vraie pour n, elle l'est aussi pour n+1 :

Par hypothèse de récurrence :

(x+y)^{n+1}=(x+y)\cdot\sum_{k=0}^n {n \choose k} x^{n-k} y^k,

Par distributivité (En mathématiques, on dit qu'un opérateur est distributif sur un opérateur si pour tous x, y, z on a la propriété suivante : et de même à droite) de \cdot sur +  :

(x+y)^{n+1}=x^{n+1}+x\cdot\sum_{k=1}^n {n \choose k} x^{n-k} y^k  +y\cdot\sum_{k=0}^{n-1} {n \choose k} x^{n-k} y^k + y^{n+1}

Par factorisation :

(x+y)^{n+1} =x^{n+1}+\sum_{k=1}^n \left\lbrack {{n} \choose {k}} + {{n} \choose {k-1}} \right\rbrack x^{n-k+1} y^{k}+ y^{n+1}

En utilisant la formule du triangle (En géométrie euclidienne, un triangle est une figure plane, formée par trois points et par les trois segments qui les relient. La...) de Pascal :

(x+y)^{n+1} =x^{n+1}+\sum_{k=1}^n {{n+1}\choose k}~x^{n-k+1} y^{k}+y^{n+1}

Ce qui termine la démonstration.

Page générée en 0.010 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique