En mathématiques, une algèbre de Kac-Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac-Moody tiennent leur nom de Victor Kac et de Robert Moody, qui les ont indépendamment découvert. Ces algèbres sont une généralisation des algèbres semi-simples de Lie de dimension finie, et de nombreuses propriétés liées à la structure des algèbres de Lie, notamment son système de racines, ses représentations irréductibles, ses liens avec les variétés de drapeaux ont des équivalents dans le système de Kac-Moody. Une classe d'algèbres de Kac-Moody appelée algèbre de Lie affine est particulièrement importante dans les mathématiques et la physique théorique, et plus spécifiquement dans les théories conforme des champs et des modèles exactement solubles. Kac démontra élégamment certaines identités combinatoires, les identités de Macdonald, en se basant sur la représentation théorique d'algèbres de Kac-Moody affines. Garland et Lepowski démontrèrent quant à eux que les identités de Rogers-Ramanujan pouvaient être dérivées de façon similaire.
Une algèbre de Kac-Moody est déterminée comme suit :
L'algèbre de Kac-Moody est l'algèbre de Lie
Où
Une algèbre de Lie (de dimension infinie ou non) sur le corps des réels est également considérée comme une algèbre de Kac-Moody si sa complexification est une algèbre de Kac-Moody.
La matrice de Cartan associée à l'algèbre de Kac-Moody
Il existe aussi une autre classe d'algèbre de Kac Moody appelée algèbres hyperboliques. S ne peut jamais être définie négative ou semi-définie négative puisque ses coefficient diagonaux sont positifs.
Ces types d'algèbres de Kac Moody sont également caractérisés par leurs diagrammes de Dynkin:
Les algèbres affines sont les mieux connues des algèbres de Kac-Moody.
Soit
Si g est un élément de l'algèbre de Kac-Moody tel que