L'ensemble des applications de E dans F est souvent noté FE. Quand E et F sont des ensembles finis, si on note |E| le cardinal d'un ensemble E, on a :
Il s'agit également de l'ensemble des familles indexées par E d'éléments de F, et on peut utiliser également cette notation :
Dans le cas dégénéré, où E est l'ensemble vide, le produit cartésien de E par F est vide, il y a une seule application dans F∅, celle dont le graphe est l'ensemble vide.
Dans l'autre cas dégénéré où F est vide mais E non vide, alors l'unique sous ensemble de
La définition usuelle en mathématiques d'une fonction est donc ensembliste et présuppose essentiellement celle de couple et de produit cartésien. Une application ou fonction est un triplet f = (E, F, G) avec G ⊂ E × F, et qui vérifie que pour tout x de E il existe un unique y de F tel que le couple (x, y) appartienne à G. L'ordre des ensembles du triplet est arbitraire et on trouve d'ailleurs des variations suivant les ouvrages. On décompose souvent la propriété caractéristique en deux clauses :
En d'autres termes ceci signifie que G intersecte chaque sous-ensemble {x} × F, en un unique point, dont l'existence est donnée par la première clause, et l'unicité par la seconde. Ce point, élément de F, est appelé image de x par l'application f et noté f(x). Pour bien distinguer l'image d'un élément de E, qui est un élément de F, de l'image de f, qui est un sous-ensemble de F, on parle parfois dans ce dernier cas d’ensemble image de f.
On dit également que f associe à x l'élément f(x), ou encore que f envoie x sur f(x). Les formes passives « x est envoyé par f sur f(x) », « f(x) est associé à x par f » sont aussi utilisées.
Si x, élément de E, vérifie f(x)=y, on dit que x est un antécédent de y. Un élément y de F peut très bien avoir plusieurs antécédents ou n'en avoir aucun.
Pour une fonction de E dans F qui à x associe f(x) on note :
par exemple pour la fonction de la variable réelle qui à un nombre associe son carré :
Dans l'exemple précédent on a utilisé la structure des réels pour définir la fonction. Pour un ensemble E quelconque on peut toujours définir l’identité ou application identique, qui associe à tout élément x de E l'élément x lui-même. Son graphe est la diagonale du produit cartésien
Si F est non vide, alors on peut associer à tout élément b de F, une application dite application constante de E dans F, qui associe à tout élément de E l'élément b. Son graphe est donc E × {b}.
On utilise parfois d'autres terminologies et d'autres notations. Les fonctions définies sur l'ensemble N des entiers naturels (ou une partie de celui-ci) sont souvent appelées suites, par exemple les suites réelles sont les fonctions de N dans l'ensemble R des réels. On utilise alors la notation indicielle : (un)n ∈ N désigne la suite, écriture qui peut être abrégée en (un), et un désigne l'image par cette suite de l'entier n.
Cette notation s'étend aux familles, indexées par I d'éléments d'un ensemble F donné, qui sont, avec une autre notation et une autre terminologie, des fonctions de I dans F.