Émulsions et suspensions - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

L'émulsion

Une émulsion est formée de deux liquides non miscibles, dont l'un est finement réparti dans l'autre en gouttelettes dont le diamètre est généralement supérieur à 0.10um. La phase dispersée est aussi appelée phase interne ou discontinue, et la phase dispersante peut être appelée phase externe ou continue.

Salon la pharmacopée, les émulsions dans lesquelles la phase dispersée est lipophile (ex.: huile végétale ou minérale) et la phase dispersante hydrophile (ex.: eau) sont dites de type aqueux L/H; les émulsions dans lesquelles la phase dispersée est hydrophile et la phase dispersante lipophile sont quant à elles dites de type huileux H/L.

Théorie de la stabilité des émulsions

Les émulsions sont formées par apport d'énergie, correspondant à l'énergie nécessaire pour créer une aire interfaciale plus grande. Par conséquent ces systèmes ne sont pas thermodynamiquement stables. La stabilité des émulsions est donc leur principal problème.

La plupart des particules colloïdales en suspension développent une charge électrostatique. Les particules liquides ou solides d'un système dispersé sont généralement porteuses d'une charge électrique en surface. Cette charge peut être causée par le processus de dispersion, la présence de groupements chargés en surface ou l'adsorption d'ions provenant du milieu de dispersion. Le potentiel zêta représente une valeur relative de la charge des particules. Puisque les particules d'un système dispersé donné sont de même nature, elles portent une charge de même signe qui provoque leur répulsion lorsqu'elles tentent de s'approcher les unes des autres. Cet effet de répulsion constitue une protection contre tout phénomène de collision pouvant engendrer l'agglomération et la fusion des particules. Cette force de répulsion dépend de la valeur du potentiel zêta de la particule, de la taille de la particule et de la distance séparant les particules.

À côté des forces de répulsion dues aux charges électriques, il existe des forces d'attraction qui dépendent étroitement de la structure atomique des constituants des particules. Comme tout système ultradispersé, les suspensions ou émulsions colloïdales sont soumises aux forces de Van der Waals (forces d'attraction entre les molécules considérées comme indépendantes créant des liaisons de faible énergie) et au mouvement brownien (mouvement thermique), ce qui les rend fondamentalement instables. Les forces de Van der Waals sont de trois types: les forces de Keesom, de Debye et de London. Les forces de London (dipôle instantané - dipôle induit) deviennent très importantes à faible distance et conduisent à la coagulation du système s'il n'est pas adéquatement stabilisé.

L'interaction entre particules dépend étroitement de la grandeur relative des forces en présence: lorsque les forces de répulsion sont supérieures aux forces d'attraction, les particules ne peuvent s'agglomérer et sont éloignées en permanence les unes des autres. Inversement, lorsque les forces d'attraction sont supérieures aux forces de répulsion, les particules s'agglomèrent pour former des flocules ou agrégats. Ce phénomène, appelé floculation, agrégation ou coagulation des particules, constitue la situation où les particules sont les plus près les unes des autres, et se produit lorsque les films interfaciaux de tensioactif entre deux gouttelettes se rompent puis fusionnent ensemble.

Un autre phénomène intervient dans la stabilité des émulsions. Le mûrissement d'Ostwald se produit au cours du vieillissement des émulsions. La différence de pression de Laplace qui existe entre des gouttelettes de diamètres différents va provoquer une migration des molécules constituant la goutte de plus petite taille, à travers la phase continue et jusqu'à la goutte de plus grande taille. Ce phénomène entraîne une augmentation de la taille moyenne des gouttelettes de phase dispersée, et un resserrement de la répartition granulométrique de l'émulsion.

Technique d’analyse de la stabilité physique

La diffusion multiple de la lumière couplée à un balayage vertical est la technique la plus employée pour suivre l’état de dispersion d’un produit, et par là même identifier et quantifier les phénomènes d’instabilité. Elle fonctionne avec les dispersions concentrées, sans dilution. Quand la lumière est envoyée dans l’échantillon, elle est rétrodiffusée par les particules / gouttes. L’intensité rétrodiffusée est directement proportionnelle à la taille et à la fraction volumique de la phase dispersée. Ainsi, les variations locales de concentration (crémage, sédimentation) et les variations globales de la taille (floculation, coalescence) sont détectées et suivies.

Principe de mesure de la diffusion multiple de la lumière couplée à un balayage vertical

Méthodes d’accélération pour la prédiction de la durée de vie

Le processus cinétique de déstabilisation peut prendre du temps (jusqu’à plusieurs mois, voire plusieurs années pour certains produits) et ainsi, le formulateur doit utiliser des méthodes d’accélération, afin d’obtenir des durées de développement acceptables. Les méthodes thermiques sont les plus employées et consistent à augmenter la température afin d’accélérer les déstabilisations (en restant en deçà des températures critiques d’inversion de phase et de dégradations chimiques). La température n’affecte pas seulement la viscosité, mais également la tension interfaciale dans le cas des tensioactifs non-ioniques et plus généralement les forces d’interactions à l’intérieur du système. En stockant la dispersion à hautes températures, on simule les conditions de vie réelles d’un produit (par exemple un tube de crème solaire dans une voiture en été), mais également on accélère les processus de déstabilisation jusqu’à 200 fois. L’accélération mécanique incluant la vibration, la centrifugation et l’agitation, sont parfois utilisée. Elles soumettent le produit à différentes forces qui poussent les particules / gouttes les unes contre les autres, aidant ainsi au drainage du film. Cependant, des émulsions ne coalesceraient jamais sous une gravité normale, alors qu’elles le font sous gravité artificielle. De plus, des phénomènes de ségrégation de différentes populations de particules ont été mises en évidence en utilisant la centrifugation et la vibration.

Page générée en 0.135 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise