Les procédés de gazéification
Il existe à l'heure actuelle sur le marché quatre procédés de gazéification opérationnels : la gazéification à lit solide à contre courant ; à lit solide à injection ; la gazéification à lit fluidifié, et la gazéification à lit entraîné.
- Le réacteur à lit solide « à contre-courant » comporte un lit solide de carburant (par exemple de la houille ou de la biomasse), généralement vertical, à travers lequel on force la convection d'un comburant (vapeur d'eau, gaz oxygène ou air). Les particules minérales, indifférentes à la réaction, peuvent être évacuées sous forme de cendres ou de mâchefer ; mais pour former des scories ou du mâchefer, il faut que le réacteur développe des températures supérieures à la température de fusion des cendres, c'est-à-dire que le lit solide présente une grande résistance mécanique et conserve une bonne porosité malgré la température et la pression du réacteur. Toutefois, certaines améliorations récentes ont permis de relaxer ces conditions. Le rendement en gaz de ce type de réacteur est relativement faible. Le rendement thermique est élevé dans la mesure où les gaz sont produits à une température relativement basse, mais cela signifie aussi que la réaction dégage également une proportion appréciable de goudrons et de méthane : aussi le gaz produit doit-il être soigneusement raffiné ou recyclé dans le réacteur avant distribution.
- Le réacteur à lit solide à injection est similaire au précédent, mais le comburant gazeux (l'oxygène) est injecté vers le bas (c'est pourquoi les Anglo-saxons l'appellent « down draft »). Il faut chauffer en permanence l'extrémité supérieure du lit solide, soit en brûlant une certaine fraction de carburant, soit par apport thermique extérieur. Les gaz produits sont libérés à une température élevée, et l'on récupère souvent une partie de cette chaleur pour la communiquer au comburant à injecter à l'extrémité supérieure du lit solide : on rejoint ainsi pratiquement le niveau de rendement thermique du système à contre-courant. L'avantage de ce procédé réside dans le fait que les goudrons qui peuvent se former doivent ici percoler à travers la chaude matrice poreuse de carburant : ainsi, le taux de goudron est beaucoup plus faible que dans le type de réacteur précédent.
- Dans les réacteurs à lit fluidifié, le carburant est fluidisé dans un mélange vapeur d'eau-oxygène, ou dans l'air. Les particules minérales sont récupérées sous forme de cendre, ou précipitent sous forme de lourds nodules de mâchefer. Comme les réacteurs produisant de la cendre opèrent à température relativement basse, il faut que le carburant fluidifié soit hautement réactif : les charbons grossiers conviennent bien à ce genre de centrale. Les réacteurs à précipitation mettent en œuvre des températures légèrement supérieures, et consomment plutôt des houilles de bonne qualité. Le rendement en gaz est supérieur aux réacteurs à lit solide, mais inférieur aux réacteurs à lit entraîné. L'efficacité de la gazéification peut être affectée par l'élimination de matière carbonée. Pour augmenter le rendement en gaz, on peut recycler ou rebrûler les produits solides. Les réacteurs à lit fluidifié sont particulièrement indiqués pour les hydrocarbures susceptibles de dégager des cendres corrosives ou abrasives, qui endommageraient l'enceinte d'un réacteur à lit fixe : les déchets verts présentent généralement une teneur élevée en cendres de ce type.
- Dans les réacteurs à lit entraîné, on injecte le combustible finement pulvérisé, qu'il soit solide (suie) ou liquide (hydrocarbure) dans un jet d'oxygène. La réaction se produit au milieu d'un nuage de très fines particules. Compte tenu de la haute température requise et de leur facilité à être réduits en poudre, la plupart des charbons conviennent pour ce genre de procédé. Haute température et pression élevée signifient également que le rendement en gaz de ce type de réacteur est élevé ; en revanche, le rendement thermique est un peu inférieur car il faut refroidir les gaz produits avant qu'ils puissent être raffinés, compte tenu des techniques de raffinage actuelles. Grâce aux fortes températures utilisées, goudrons et méthane ne peuvent se former et les gaz produits en sont exempts, mais cela se paie au prix d'une consommation en oxygène plus élevée que dans les autres types de réacteur. Cela dit, les réacteurs à lit entraîné réduisent la plupart des impuretés minérales en mâchefer car il dépassent de beaucoup la température de fusion des cendres. La fraction restante des cendres se retrouve soit sous forme de cendres volantes, soit sous forme de suie noirâtre. Certains carburants, notamment les déchets verts, donnent naissance à des cendres corrosives pour la céramique réfractaire qui forme le revêtement interne de l'enceinte. C'est pourquoi certains réacteurs à lit entraîné, plutôt que de comporter un revêtement interne en céramique, contiennent une double enceinte refroidie par un courant d'eau ou de vapeur, dont la paroi est couverte d'une croûte de mâchefer, qui oppose un bouclier à la corrosion. D'autres carburants dégagent, eux, des cendres dont la température de fusion est réellement très élevée. Dans ce cas, on mélange le plus souvent la matière première avec de la poudre de craie, faisant office de fondant, avant de l'introduire dans le réacteur. L'apport d'une modeste quantité de craie suffira généralement pour faire chuter la température de fusion. La poudre doit aussi être plus fine que pour les autres types de carburant : cela implique qu'il faut dépenser davantage d'énergie pour la préparation de la poudre faisant carburant. Mais ce qui représente, et de loin, la plus grande dépense d'énergie dans les réacteurs à lit entraîné, c'est encore la préparation du dioxygène.