Inférence bayésienne - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

On nomme inférence bayésienne la démarche logique permettant de calculer ou réviser la probabilité d'une hypothèse. Cette démarche est régie par l'utilisation de règles strictes de combinaison des probabilités, desquelles dérive le théorème de Bayes. Dans la perspective bayésienne, une probabilité n'est pas interprétée comme le passage à la limite d'une fréquence, mais plutôt comme la traduction numérique d'un état de connaissance (le degré de confiance accordé à une hypothèse, par exemple ; voir théorème de Cox-Jaynes).

Jaynes utilisait à ce sujet avec ses étudiants la métaphore d'un robot à logique inductive. On trouvera un lien vers un de ses écrits dans l'article Intelligence artificielle.

La manipulation des probabilités : notation et règles logiques

L'inférence bayésienne est fondée sur la manipulation d'énoncés probabilistes. Ces énoncés doivent être clairs et concis afin d'éviter toute confusion. L'inférence bayésienne est particulièrement utile dans les problèmes d'induction. Les méthodes bayésiennes se distinguent des méthodes dites standard par l'application systématique de règles formelles de transformation des probabilités. Avant de passer à la description de ces règles, familiarisons-nous avec la notation employée.

Notation des probabilités

Prenons l'exemple d'une femme cherchant à savoir si elle est enceinte. On définira d'abord une hypothèse E : elle est enceinte, dont on cherche la probabilité p(E). Le calcul de cette probabilité passe évidemment par l'analyse du test de grossesse. Supposons que des études aient démontré que pour des femmes enceintes, le test indique positif 9 fois sur 10. Pour les femmes non-enceintes, le test indique négatif dans un ratio de 19/20. Si l'on définit les hypothèses :

  • TP : le test est positif,
  • TN : le test est négatif,

on peut interpréter les résultats précédents de manière probabiliste :

La probabilité de l'hypothèse TP sachant que la femme est enceinte est de 0,9.

En langage des probabilités, cet énoncé sera décrit par l'expression p(TP | E) = 0,9. De la même manière p(T_N|\bar{E})=0,95 signifie que la probabilité que le test soit négatif pour une femme qui n'est pas enceinte ( \bar{E} ) est de 0,95. Remarquez que l'on suit ici la convention selon laquelle un énoncé ou une hypothèse certainement vraie a une probabilité de 1. Inversement, un énoncé certainement faux a une probabilité de 0.

En plus de l'opérateur conditionnel |, les opérateurs logiques ET et OU ont leur notation particulière. Ainsi, la probabilité simultanée de deux hypothèses est notée par le signe \cap . L'expression p(E \cap T_P) décrit donc la probabilité d'être enceinte ET d'obtenir un test positif. Enfin, pour l'opérateur logique OU, un signe \cup est généralement utilisé. L'expression p(E \cup \bar{E}) signifie donc la probabilité que la femme soit enceinte ou non. Clairement, selon la convention précédente, cette probabilité doit être de 1, puisque qu'il est impossible d'être dans un état autre qu'enceinte ou pas enceinte.

Les règles de la logique des probabilités

Il existe seulement deux règles pour combiner les probabilités, et à partir desquelles est bâtie toute la théorie de l'analyse bayésienne. Ces règles sont les règles d'addition et de multiplication.

La règle d'addition p(A \cup B|C) = p(A|C) + p(B|C) - p(A \cap B|C)

La règle de multiplication p(A \cap B) = p(A|B)p(B) = p(B|A)p(A)

Le théorème de Bayes peut être dérivé simplement en mettant à profit la symétrie de la règle de multiplication p(A|B) = \frac{p(B|A)p(A)}{p(B)}.

Le théorème de Bayes permet d'inverser les probabilités. C'est-à-dire que si l'on connaît les conséquences d'une cause, l'observation des effets permet de remonter aux causes.

Dans le cas précédent de la femme enceinte, sachant le résultat du test, il est possible de calculer la probabilité que la femme soit enceinte en utilisant le théorème de Bayes. En effet, dans le cas d'un test positif, p(E|T_P) = \frac{p(T_P|E)p(E)}{p(T_P)}. Remarquez que l'inversion de la probabilité introduit le terme p(E), la probabilité a priori d'être enceinte. La probabilité a priori est la probabilité de l'hypothèse, indépendamment du résultat du test. Une femme qui utilise des moyens de contraception choisirait un p(E) très faible, puisqu'elle n'a pas de raison de croire qu'elle est enceinte. Par contre, une femme ayant eu récemment des relations sexuelles non-protégées et souffrant de vomissements fréquents adopterait une probabilité a priori plus élevée. Le résultat du test est donc pesé, ou nuancé, par cette estimation indépendante de la probabilité d'être enceinte.

C'est cette estimation a priori qui est systématiquement ignorée par les méthodes statistiques standard.

Notation d'évidence

Cette notation est souvent attribuée à I. J. Good. Ce dernier en attribuait cependant la paternité à Alan Turing et, indépendamment, à d'autres chercheurs dont Harold Jeffreys.

Dans la pratique, quand une probabilité est très proche de 0 ou de 1, il faut observer des éléments considérés eux-mêmes comme très improbables pour la voir se modifier. On définit l'évidence par : Ev(p) =\log\frac{p}{(1-p)} =\log{p}-\log(1-p). Pour mieux fixer les choses, on travaille souvent en décibels (dB), avec l'équivalence suivante : Ev(p) = 10\,\log_{10} \frac{p}{(1-p)}. Une évidence de -40 dB correspond à une probabilité de 10-4, etc. Si on prend le logarithme en base 2, Ev(p) = \log_{2} \frac{p}{(1-p)} , l'évidence est exprimée en bits. On a Ev_{dB}= \approx 3,0103\, Ev_{bits}\quad (10^3\approx 2^{10}) . L'intérêt de cette notation, outre qu'elle évite de cette manière d'avoir trop de décimales au voisinage de 0 et de 1, est qu'elle permet aussi de présenter la règle de Bayes sous forme additive : il faut le même poids de témoignage (weight of evidence) pour faire passer un évènement d'une plausibilité de -40 dB (10-4) à -30 dB (10-3) que pour le faire passer de -10 dB (0,1) à 0 dB (0,5), ce qui n'était pas évident en gardant la représentation en probabilités. La table suivante présente quelques équivalences :

Table d'équivalence
Probabilité Évidence (dB) Évidence (bits)
0,0001 -40,0 -13,3
0.0010 -30,0 -10,0
0,0100 -20,0 -6,6
0,1000 -9,5 -3,2
0,2000 -6,0 -2,0
0,3000 -3,7 -1,2
0,4000 -1,8 -0,6
0,5000 0,0 0,0
0,6000 1,8 0,6
0,7000 3,7 1,2
0,8000 6,0 2,0
0,9000 9,5 3,2
0,9900 20,0 6,6
0,9990 30,0 10,0
0,9999 40,0 13,3

Ev est une abréviation pour weight of evidence, parfois traduit en français par le mot évidence ; la formulation la plus conforme à l'expression anglaise d'origine serait le mot à mot poids de témoignage, mais par une coïncidence amusante « évidence » se montre très approprié en français pour cet usage précis.

C'est peu après les publications de Jeffreys qu'on découvrit qu'Alan Turing avait déjà travaillé sur cette question en nommant les quantités correspondantes log-odds dans ses travaux personnels.

Page générée en 0.162 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise