Interactions logiques - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La notion mathématique d’« interaction logique », conçue comme généralisation de celle d’« interaction », issue du Plan d’Expériences, a été introduite à la fin des années 1990. D’abord utilisée en analyse des données (Iconographie des corrélations), elle a trouvé un champ d’application dans les modèles de régression multiple non postulés.

Notion d’interaction

La notion d’interaction ne doit pas être confondue avec celle de corrélation. On parle d’effet d’interaction lorsqu’une variable à expliquer Y est conditionnée par le couplage de deux variables explicatives A et B.

Dans l’exemple suivant, Y n’est corrélé ni à A ni à B ; mais Y est corrélé négativement au produit A.B. En effet, Y présente de fortes valeurs lorsque A.B présente de faibles valeurs :

A B A.B Y
Essai 1 -1 -1 1 10
Essai 2 -1 1 -1 21
Essai 3 1 -1 -1 19
Essai 4 1 1 1 9

L' « interaction » A.B est aussi appelé « produit croisé » de A et de B.

Généralisation aux tableaux quelconques

La notion d’interaction logique, qui va être introduite ci-après, s’applique aux tableaux de données en général, sur variables quantitatives et/ou qualitatives (pourvu que ces dernières utilisent un codage disjonctif complet).

Quand les variables A et B n'ont pas la même unité, comment calculer le produit A.B pour qu’il garde un sens physique ?

Il faut se ramener à une unité commune d’évaluation. L’usage est de centrer réduire les variables A et B, avant de calculer le produit croisé A.B (les variables centrées réduites ont une moyenne nulle et un écart type égal à un). Dans ces nouvelles unités, notre tableau devient :

A B A.B Y
Essai 1 -0.866 -0.866 .866 10
Essai 2 -0.866 0.866 -0.866 21
Essai 3 0.866 -0.866 -0.866 19
Essai 4 0.866 0.866 0.866 9

Un cas particulier de tableau de donnée

Le tableau ci-dessus est parfois appelé « plan d’expériences complet à 2 niveaux ». En effet, chaque variable explicative n’a que 2 niveaux (faible et fort), et tous les cas sont considérés, à savoir :

  • A faible et B faible,
  • A faible et B fort,
  • A fort et B faible,
  • A fort et B fort.

La variable à expliquer Y est aussi appelée la "réponse" de l'expérience.


C’est un cas particulier du « plan d’expériences complet à k niveaux ».

Dans un « plan complet », les variables A, B et A.B sont orthogonales, c'est-à-dire que leur corrélation est nulle.

Le plan complet est lui-même un cas particulier du « plan d’expérience », dans lequel les variables explicatives A et B sont contrôlées de façon raisonnée pour obtenir le maximum d’information concernant leurs influences sur Y, dans le minimum d’essais.

Enfin, le plan d’expériences est un cas particulier des tableaux de données, dans lesquels les variables explicatives ne sont pas forcément contrôlées.

Page générée en 0.080 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise