Méthode de Cardan - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Principe de la méthode

Considérons l'équation générale du troisième degré suivante : a x^3 + b x^2  + c x + d = 0\, .

En posant \textstyle{x = z - \frac{b}{3a}} , on se ramène à une équation de la forme : z^3  +  p z + q = 0\,
 p = - \frac{b^2}{3a^2} + \frac{c}{a} et  q = \frac{b}{27a}\left(\frac{2b^2}{a^2}-\frac{9c}{a}\right)+\frac{d}{a} .

On va maintenant poser  z = u + v\, avec u et v complexes, de façon à avoir deux inconnues au lieu d'une et se donner ainsi la possibilité de poser ultérieurement une condition sur u et v permettant de simplifier le problème. L'équation z^3  +  p z + q = 0\, devient ainsi

 (u+v)^3  +  p (u+v) + q = 0\, .

Cette équation se transforme aisément sous la forme suivante :

 u^3+v^3+(3uv+p)(u+v)+q=0\,

La condition de simplification annoncée sera alors  3uv+p=0\, . Ce qui nous donne d'une part  u^3+v^3+q=0\, et d'autre part  uv=-\frac{p}{3}\, , qui, en élevant les deux membres à la puissance 3 donne  u^3v^3=-\frac{p^3}{27}\, .

Nous obtenons finalement le système somme-produit des deux inconnues u3 et v3 suivant :

 \begin{cases}u^3+v^3&=-q\\ u^3v^3&=-\frac{p^3}{27}\end{cases}

Les inconnues u3 et v3 étant deux complexes dont on connaît la somme et le produit, ils sont donc les solutions de l'équation du second degré :

 X^2+qX-\frac{p^3}{27}=0

Le discriminant de cette équation est \Delta = q^2 - 4 \times 1 \times \frac{-p^3}{27} = q^2 + \frac{4}{27}p^3\, et les racines sont

 \begin{cases} u^3 = \frac{-q + \sqrt{\Delta}}{2} \quad\!\mbox{ et } v^3 = \frac{-q - \sqrt{\Delta}}{2}, & \mbox{si }\Delta\mbox{ est positif} \\ u^3 = \frac{-q + i\sqrt{|\Delta|}}{2} \mbox{ et } v^3 = \frac{-q - i\sqrt{|\Delta|}}{2}, & \mbox{si}\ \Delta\ \mathrm{est\ n\acute{e}gatif} \\ u^3 = v^3 =\frac{-q}{2}, & \mbox{si }\Delta\mbox{ est nul} \end{cases}

Il suffit alors d'associer les trois racines cubiques de u3 et v3 deux par deux de façon à obtenir trois couples (u,v) tel que  uv=-\frac{p}{3} , puis reporter les trois couples de valeurs trouvés pour u et v dans l'expression  z = u + v\, .

Enfin, on revient au premier changement de variable x = z - \frac{b}{3a} pour avoir les trois racines de l'équation du troisième degré posée au départ.

Remarque historique

Une polémique concernant la paternité de cette méthode existe.

On raconte que la méthode fut précédemment découverte par le mathématicien italien Tartaglia. À cette époque, les mathématiciens se lançaient des défis pour résoudre des équations du troisième degré et Tartaglia les résolvait toutes. Intrigué, Cardan lui a demandé s'il n'aurait pas trouvé des méthodes. Après s'être fait prier et avoir reçu l'assurance que Cardan ne les dévoilerait à personne, Tartaglia les lui confia. Quelle ne fut pas sa surprise de voir Cardan les publier en 1545.

On appelle désormais souvent ces formules les formules de Tartaglia-Cardan.

L'utilisation des formules de Cardan nécessite parfois l'utilisation de nombres complexes, même pour trouver des solutions réelles. En fait, les nombres imaginaires sont précisément nés à cette occasion.

Dans l'exemple z3 = 15z + 4 ou bien z3 - 15z - 4 = 0, on a p = - 15 et q = -4, donc : u^3v^3 = {15^3 \over 27} = 125 et u3 + v3 = 4 donc u3 et v3 sont racines de l'équation X2 - 4X + 125 = 0, dont les racines n'existent pas. Pourtant, il y a bien une solution z à l'équation initiale ; c'est z = 4. C'est Bombelli qui surmontera cette difficulté en proposant pour la première fois un calcul sur les nombres imaginaires. La résolution formelle de l'équation X2 - 4X + 125 = 0 donne pour racines u^3 = 2 + \sqrt{-121} = 2 + 11\sqrt{-1} et v^3 = 2 - \sqrt{-121} = 2 - 11\sqrt{-1} , or Bombelli s'aperçoit que le cube de vaut et que le cube de 2 - \sqrt{-1} vaut 2 - \sqrt{-121} . Il en déduit que u = 2 + \sqrt{-1} et que v = 2 - \sqrt{-1} et il trouve bien finalement comme solution z = u + v = 4.

Les nombres imaginaires sont nés.

Page générée en 0.119 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise