La méthode de Monte-Carlo cinétique, kinetic Monte Carlo (KMC) en anglais, est une méthode de Monte-Carlo de simulation informatique permettant de simuler des processus se produisant à des taux connus. En cela elle permet de simuler exactement le comportement de systèmes évoluant selon une équation maîtresse.
C’est une méthode peu gourmande en temps de calcul permettant d’explorer des échelles de temps et d’espace importantes. Elle permet en particulier d’étudier des phénomènes à probabilité faible.
Les taux doivent être connus à l'avance, l'algorithme ne fait que les utiliser.
L'algorithme Monte-Carlo cinétique porte plusieurs noms : algorithme à temps de résidence residence-time algorithm, Bortz-Kalos-Liebowitz (BKL) (Bortz 1975), n-fold way algorithme, algorithme ou méthode de Monte-Carlo dynamique ou encore algorithme de Gillespie (Gillespie 1976), ...
L'algorithme de Monte-Carlo cinétique est utilisé pour modéliser les sauts aléatoires d'un système d'un état initial vers un ensemble d'états finaux possibles, le nombre total Nt de sauts effectués à un instant t étant modélisé par un processus de Poisson. À l'issue de chaque saut, on évalue les conséquences de la transition entre l'état initial et le nouvel état : arrêt de la simulation, nouvelle étape de simulation avec ou sans changement des taux de transfert, etc.
Pour se familiariser avec l'algorithme, on suppose dans cette section que les taux de transfert restent constants pendant l'intervalle de temps séparant deux sauts successifs, ce qui correspond à un processus de Poisson homogène. L'algorithme est donné par les étapes suivantes :
Cet algorithme simule l'évolution du système au cours du temps et n'a pas a priori de condition d'arrêt. En pratique, on arrête la boucle lorsque le temps dépasse une certaine valeur ou lorsque le système a effectué un certain nombre de sauts ; la suite des états i suivis par le système au cours du temps est appelée une trajectoire Monte-Carlo ; on répète ensuite cette boucle de manière à obtenir un nombre important de trajectoires, auxquelles on peut appliquer une analyse statistique. Puisque les trajectoires sont indépendantes les unes des autres, il est facile de paralléliser l'algorithme de Monte-Carlo cinétique.
L'algorithme est essentiellement le même si l'on suppose que les Γi dépendent du temps, mais les formules reliant U et U' à T et à l'état final i sont différentes :