Densité de probabilité - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En théorie des probabilités ou en statistiques, une densité de probabilité est une fonction qui permet de représenter une loi de probabilité sous forme d'intégrales.

Formellement, une loi de probabilité possède une densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la...) ƒ, si ƒ est une fonction définie sur \ \scriptstyle\mathbb{R},\ positive ou nulle et Lebesgue-intégrable, telle que la probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un...) de l'intervalle [a, b] est donnée (Dans les technologies de l'information, une donnée est une description élémentaire,...) par

\int_a^b f(x)\,dx

pour tous nombres a. Par exemple, si la variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle...) X a pour densité de probabilité (En théorie des probabilités ou en statistiques, une densité de probabilité est...) la fonction ƒ, la probabilité que la variable X soit dans l'intervalle [4,3, 7,8] sera

\mathbb{P}(4,3 \leq X \leq 7,8) = \int_{4,3}^{7,8} f(x)\,dx.

Cela implique que l'intégrale (Une intégrale est le résultat de l'opération mathématique, effectuée sur une fonction, appelé...) de ƒ sur tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou...) \ \mathbb{R}\ donne 1. Réciproquement, pour toute fonction ƒ positive ou nulle et Lebesgue-intégrable, d'intégrale égale à 1 :

\left\{f(x) \geq 0\quad \forall x\right\}\quad \and\quad\left\{ \int_{-\infty}^\infty \,f(x)\,dx = 1\right\},

il existe une loi de probabilité (En théorie des probabilités et en statistique, une loi de probabilité décrit...) ayant ƒ pour densité de probabilité.

Intuitivement, si une loi de probabilité a pour densité ƒ, alors l'intervalle infinitésimal [x, x + dx] a pour probabilité ƒ(x) dx.

Informellement, une densité de probabilité peut être vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et...) comme la limite d'un histogramme : si on dispose d'un échantillon (De manière générale, un échantillon est une petite quantité d'une matière, d'information, ou...) suffisamment important de valeurs d'une variable aléatoire (Une variable aléatoire est une fonction définie sur l'ensemble des résultats possibles d'une...) à densité, représenté par un histogramme (En statistiques, un histogramme est un graphe permettant de représenter la répartition...) des fréquences relatives des différentes classes de valeurs, alors cet histogramme va ressembler à la densité de probabilité de la variable aléatoire, pourvu que les classes de valeurs soient suffisamment étroites.

Densité de probabilité d'une variable aléatoire réelle

Lien entre la densité, f et la fonction de répartition (En théorie des probabilités ou en statistiques, la fonction de répartition d'une...) (haut), et, plus généralement, les probabilités (bas).

Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la...) — En théorie des probabilités (La théorie des probabilités est l'étude mathématique des phénomènes...) ou en statistiques, on dit qu'une fonction \scriptstyle\ f\ est une densité de probabilité d'une variable aléatoire réelle \scriptstyle\ X\ si, pour tout réel \scriptstyle\ x,

\mathbb{P}(X\le x)= \int_{-\infty}^{x}\ f(u)du.

La probabilité \scriptstyle\ \mathbb{P}(a < X \le b)\ se calcule alors par la relation suivante :

\mathbb{P}\left( a < X \le b \right)=\int_a^b f\left( u \right)\,du.

En traçant la représentation graphique de la densité de probabilité, la probabilité \scriptstyle\ \mathbb{P}(a < X \le b)\ se lit comme l'aire sous la courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du...) sur l'intervalle \scriptstyle\ [a , b].

En conséquence, la fonction de répartition \scriptstyle\ F_X\ de \scriptstyle\ X\ est continue, et \scriptstyle\ \mathbb{P}(X=a) = 0, pour tout nombre réel (En mathématiques, un nombre réel est un objet construit à partir des nombres...) \scriptstyle\ a. En cela, le comportement d'une variable à densité est très différent de celui d'une variable discrète.

Définition informelle de la densité de probabilité

La définition qui suit est une reformulation de la définition intégrale proposée en début d'article. C'est la définition utilisée en général par les physiciens, en particulier ceux issus du domaine de la physique statistique (La physique statistique a pour but d'expliquer le comportement et l'évolution de systèmes...).

Si \scriptstyle\ dt\ est un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre...) réel positif infiniment petit, alors la probabilité que \scriptstyle\ X\ soit inclus dans l'intervalle \scriptstyle\ [t,t+dt]\ est égale à \scriptstyle\ f\left(t\right)\mathrm dt, soit:

\mathbb{P}\left(t < X < t+ \mathrm dt \right)= f\left(t\right)\, dt.

Cette « définition » est très utile pour comprendre intuitivement à quoi correspond une densité de probabilité, et est correcte dans beaucoup de cas importants. On peut tracer une analogie avec la notion de densité de masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un...), ou encore avec la notion de densité de population. Une formulation (La formulation est une activité industrielle consistant à fabriquer des produits...) plus mathématique serait

\mathbb{P}\left(t < X < t+ h \right)= f\left(t\right)\,h+o(h),

ce qui permet de comprendre en quoi la définition donnée en physique (La physique (du grec φυσις, la nature) est étymologiquement la...) n'est pas complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou...) rigoureuse :

\mathbb{P}\left(t < X < t+ h \right)= \int_t^{t+h}\ f\left(u\right)\,du,

et il est alors facile de vérifier que si \scriptstyle\ f\ possède une limite à droite en \scriptstyle\ t\ , notons-là \scriptstyle\ f(t_+), on a alors

\int_t^{t+h}\ f\left(u\right)\,du = f\left(t_+\right)\,h+o(h),

ce qui corrobore la définition physique lorsque \scriptstyle\ f\ est continue à droite en \scriptstyle\ t, mais la met en défaut quand \scriptstyle\ f(t)\neq f(t_+). Bien sûr, les densités de probabilités usuelles sont continues à droite sauf éventuellement en un nombre fini (et en un petit nombre) de points.

Notons que ce genre d'interprétation infinitésimale (ou issue de la physique) s'étend aux dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce...) \scriptstyle\ d\ge 2, voir la section suivante.

Densité de la médiane (Le terme de médiane, du latin medius, qui est au milieu, possède plusieurs acceptations en...) de 9 variables i.i.d.  :

Soit \scriptstyle\ (X_i)_{1\le i\le 9}\ une suite de 9 v.a. r. i.i.d. de même densité \scriptstyle\ f, et de même fonction de répartition \scriptstyle\ F. Notons \scriptstyle\ M\ la médiane de cette suite. Alors :

\mathbb{P}\left(t < M < t+ dt \right)=\mathbb{P}\left(\text{parmi les 9 v.a.r., 4 exactement sont}\le t\text{ et 4 sont}\ge t+dt\right).

On peut voir cela comme une suite de 9 expériences aléatoires indépendantes faites dans les mêmes conditions, avec à chaque fois 3 issues : "\scriptstyle\ X_i\le t\ ", "\scriptstyle\ t<X_i<t+dt\ " et "\scriptstyle\ t+dt\le X_i\ ", de probabilités respectives \scriptstyle\ F(t), \scriptstyle\ f(t)dt\ et \scriptstyle\ 1-F(t+dt), donc la probabilité ci dessus est donnée par la loi multinomiale de paramètres 3, 9 et \scriptstyle\ \left(F(t),\ f(t)dt,\ 1-F(t+dt)\right). Ainsi :

\mathbb{P}\left(t < M < t+ dt \right)={9\choose 4,1,4}F(t)^4\left(f(t)dt\right)^1\left(1-F(t+dt)\right)^4,

et la densité de \scriptstyle\ M\ est

f_M(t)={9\choose 4,1,4}F(t)^4\left(1-F(t)\right)^4f(t)=630\,F(t)^4\left(1-F(t)\right)^4f(t).

Cette méthode est détaillée dans le livre de David. Un résultat plus général se trouve dans Statistique (La statistique est à la fois une science formelle, une méthode et une technique. Elle...) d'ordre.

Critères d'existence d'une densité

En vertu d'un théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une...) dû à Lebesgue, la fonction de répartition d'une variable aléatoire réelle \scriptstyle\ X, étant croissante, est dérivable presque partout sur \scriptstyle\ \mathbb{R},\ et la dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la...) ainsi obtenue est positive et intégrable sur \scriptstyle\ \mathbb{R},\ d'intégrale inférieure ou égale à 1.

Critère 1 — \scriptstyle\ X\ possède une densité de probabilité si et seulement si l'intégrale, sur \scriptstyle\ \mathbb{R},\ de la dérivée de la fonction de répartition est exactement égale à 1. Cette dérivée est alors une des densités de probabilité de \scriptstyle\ X.

Critère 2 — Si la fonction de répartition de \scriptstyle\ X\ est de classe \scriptstyle\ \mathcal{C}^1 par morceaux sur \scriptstyle\ \mathbb{R} et est, d'autre part, continue sur \scriptstyle\ \mathbb{R},\ alors la dérivée de la fonction de répartition de \scriptstyle\ X\ est une des densités de probabilité de \scriptstyle\ X.

Densité de la médiane de 9 variables i.i.d. (bis)  :

Pour le calcul de la densité de la médiane de 9 variables i.i.d., une solution plus rigoureuse que celle de la section précédente, mais plus lourde, est de calculer la fonction de répartition de la médiane, puis de la dériver. On reconnait un schéma de Bernoulli : le nombre d'indices \scriptstyle\ i\ tels que \scriptstyle\ \{X_i\le t\}\ suit une loi binomiale (En mathématiques, une loi binomiale de paramètres n et p est une loi de probabilité...) de paramètres 9 et \scriptstyle\ F(t).

 \begin{align} \mathbb{P}\left(M\le t\right) &= F_{M}(t) = \mathbb{P}\left(\text{au moins 5 des 9 }X_i\text{ sont }\le t\right) \\ &=\sum_{j=5}^9{9 \choose j}F(t)^j(1-F(t))^{9-j}. \end{align}

En dérivant, on trouve :

 \begin{align} f_{M}(t) & {} ={dF_{M} \over dt}(t)\\ & {} =\sum_{j=5}^9{9 \choose j}\left(jF(t)^{j-1}f(t)(1-F(t))^{9-j} +F(t)^j (9-j)(1-F(t))^{9-j-1}(-f(t))\right) \end{align}

Après quelques manipulations sur les coefficients binomiaux, tous les termes de cette somme se télescopent, sauf une partie du premier terme, ce qui donne :

 f_{M}(t) = {9! \over 4!4!} F(t)^{4} (1-F(t))^{4} f(t)\ =\ {9 \choose 4,1,4}F(t)^{4} (1-F(t))^{4} f(t),

puis

 \int_{\mathbb R}F(t)^{4} (1-F(t))^{4} f(t)dt = \int_{0}^1 x^{4} (1-x)^{4}dx = \frac{\Gamma(5)^2}{\Gamma(10)} = \frac{4!4!}{9!}.

Pour les deux dernières égalités, se référer aux pages sur la fonction bêta et sur la fonction gamma (La fonction gamma est, en mathématiques, une fonction complexe.). Il en découle que \scriptstyle\ f_M\ satisfait le critère 1. CQFD (CQFD (ou c.q.f.d.[1]) est l'abréviation de « ce qu'il fallait démontrer », ponctuant,...)

On pourra consulter le livre de David (pages 8-13) pour plus de détails.

Page générée en 0.024 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique