Méthode de Ruffini-Horner - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Valeur approchée d'une racine

Pour chercher la valeur approchée x d'une racine d'un polynôme P, on cherche un entier \scriptstyle x_0 tel que \scriptstyle P(x_0) et \scriptstyle P( x_0+1) soient de signe contraire. On sait alors, d'après le théorème des valeurs intermédiaires, qu'il existe une racine entre \scriptstyle x_0 et \scriptstyle x_0 + 1 . On pose alors \scriptstyle x = x_0 + \frac{y}{10} . Le nombre x est racine de P(X) si et seulement si le nombre y/10 est racine de \scriptstyle P(x_0+Y) = Q(Y) . Ce polynôme Q se détermine grâce à la méthode de Horner. Enfin x est racine de P(X) si et seulement y est racine d'un polynôme R(X) obtenu en multipliant les coefficients bk de Q par 10nk.

Il s'agit alors de chercher une racine de R comprise entre 0 et 10 en utilisant un processus analogue : on cherche un entier \scriptstyle x_1 compris entre 0 et 9 tels que \scriptstyle R(x_1) et \scriptstyle R(x_1 + 1) soient de signe contraire. On sait alors qu'il existe une racine x de P comprise entre \scriptstyle x_0+\frac{x_1}{10} et \scriptstyle x_0+\frac{x_1+1}{10} ...

On détermine ainsi les décimales successives du développement décimal de x.

Exemple : Algorithme de Ruffini-Horner pour l'extraction de la racine cubique de 18.

Il s'agit de trouver un réel x racine du polynôme \scriptstyle P(X) = X^3 - 18 . On sait immédiatement que P(2)< 0 et P(3) > 0, x est donc compris entre 2 et 3. On pose alors \scriptstyle x=2+\frac{y}{10} et on cherche le polynôme Q tel que P(2+Y)=Q(Y)

Coefficients de P 1 0 0 - 18
Coeficients de P1 1 2 4 - 10
Coeficients de P2 1 4 12
Coeficients de P3 1 6
Coeficients de P4 1

Le réel x est racine cubique de 18 si \scriptstyle x=2+\frac{y}{10} où y est racine de \scriptstyle R(X)= X^3+60X^2+1200X-10000 . La racine y est comprise entre 6 et 7 (pour éviter de balayer tous les nombres, il suffit de remarquer que 1200y et 10000 doivent être très proches avec 1200y < 10000 ). On pose alors \scriptstyle y=6+\frac{z}{10} et on cherche le polynôme S tel que R(6+Z)=S(Z).

Coefficients de R 1 60 1200 -10000
Coeficients de R1 1 66 1596 -424
Coeficients de R2 1 72 2028
Coeficients de R3 1 78
Coeficients de R4 1

Le réel y est racine de R si \scriptstyle y=6+\frac{z}{10} z est racine de \scriptstyle T(X)= X^3+780X^2+202800X-424000 . La racine z est comprise entre 2 et 3. Donc y est compris entre 6,2 et 6,3 et x est compris entre 2,62 et 2,63.

Changement de variable

L'algorithme précédent permet donc d'effectuer la division euclidienne du polynome P par \scriptstyle X-x_0 . On peut alors écrire, en posant Y = \scriptstyle X-x_0 .

P(X) = YP_1(X)+b_0\,

En utilisant de nouveau l'algorithme pour \scriptstyle P_1 , \scriptstyle P_2 , .. \scriptstyle P_n ,on obtient successivement

P(X) = Y\left(YP_2(X)+b_1\right)+b_0\,

...

P(X) = Y\left(Y\left(...Y\left(Yb_n + b_{n-1}\right)...\right)+b_1\right)+b_0\,

Les nombres \scriptstyle b_0 , \scriptstyle b_1 , ... \scriptstyle b_n sont donc les coefficients du polynôme Q tel que Q(Y) = P(x0+Y)


Illustration pratique  : Si \scriptstyle  P(X) =4X^3 - 7X^2 + 3X - 5 et que l'on cherche à écrire  \scriptstyle P(2 + Y) , on applique 4 fois la méthode de division euclidienne par X - 2 :

Coefficients de P 4 − 7 3 − 5
Coeficients de P1 4 8 − 7 = 1 2 + 3 = 5 10 − 5 = 5
Coeficients de P2 4 8 + 1 =9 18 + 5 = 23
Coeficients de P3 4 8 + 9 =17
Coeficients de P4 4

Donc

 P(2 + Y) = 4Y^3+17Y^2+23Y+5\,

Dérivées successives de P en x0

Cette propriété apparaît ici en dernière position alors qu'elle est la propriété initiale mise en évidence par Ruffini et Horner. Cependant, comme une démarche purement algébrique est possible, celle-ci, plus simple, a été présentée d'abord. Le même algorithme permet de déterminer aussi la valeur de \scriptstyle P^{(k)}(x_0) . En effet, le développement de Taylor de P(x0 + Y) donne

P(x_0+Y) = P(x_0) + P'(x_0)Y + \frac{P^{(2)}(x_0)}{2}Y^2+\cdots+\frac{P^{(k)}(x_0)}{k!}Y^k + \cdots \,

Si on note Q(Y) = P(a + Y), les coefficients bk de Q, trouvés par la méthode de Ruffini-Horner vérifient l'égalité

k!b_k=P^{(k)}(x_0)\,
Page générée en 0.149 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise