Racine carrée
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Curiosités

L’identité 2 = \sqrt{2+2} implique 2 = \sqrt{2+\sqrt{2+2}}, et par itérations successives :

2 = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}

Pour des raisons analogues, on obtient :

3 = \sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}} ; 4 = \sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+\cdots}}}} ; ...

Si r est un entier strictement supérieur à 1,

r = \sqrt{r(r-1)+\sqrt{r(r-1)+\sqrt{r(r-1)+\sqrt{r(r-1)+\cdots}}}}

Plus généralement, si p étant un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) réel supérieur ou égal à 1,

\sqrt{p+\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}}} = \frac{1+\sqrt{(4\,p+1)}}{2}

Si p est égal à 1, on obtient le nombre d'or:

\varphi = \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}.


Le mathématicien (Un mathématicien est au sens restreint un chercheur en mathématiques, par extension toute personne faisant des mathématiques la base de son activité principale. Ce terme...) Ramanujan obtint une formule alternative pour 3. Il partit de la décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès l'instant qu'ils sont privés de...)

(n+p)^2 = 1 + [n+(p-1)][n+(p+1)]\,

et construisit le produit n(n + p) en fixant p = 2

n(n+2) = n\sqrt{1 + (n+1)(n+3)}

Il substitua le terme (n + 3)

n(n+2) = n\sqrt{1 + (n+1)\sqrt{1 + (n+2)(n+4)}}

Ramanujan réitéra à l’infini en remplaçant maintenant n par 1 et obtint la jolie formule :

3 = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}}

(bien entendu, il doit ensuite démontrer que le passage à la limite est légal)

En fixant n et p à d’autres valeurs positives ou en élevant au carré (Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre côtés ont la même longueur et ses quatre angles la même mesure. Un...) une formule obtenue, on peut également construire d’autres belles formules comme :

4 = \sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\sqrt{1+\cdots}}}}}

En résumé, la relation suivante, itérée à l’infini :

n+2 = \sqrt{1 + (n+1)\sqrt{1 + (n+2)(n+4)}} = \sqrt{1 + (n+1)\sqrt{1 + (n+2)\sqrt{1 + (n+3)(n+5)}}}

permet donc d’exprimer tous les nombres entiers strictement supérieurs à 1 comme une itération infinie de racines carrées.

En particulier, en fixant n = 0

2 = \sqrt{1 + \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + 5\sqrt{1 + 6\sqrt{1 + 7\sqrt{1 + 8\sqrt{1 + 9\sqrt{1 + \cdots}}}}}}}}}}

(toutes ces formules sont en fait des affirmations sur des limites, qui se démontrent, de manière assez délicate, par encadrements)

Le nombre π s’exprime sous la forme d’une itération infinie de racines carrées :

\pi = \lim_{k \to \infty} \left ( 2^{k} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots \sqrt{2 + \sqrt{2}}}}}} \right ) , où k est le nombre de racines carrées emboitées

Ou encore :

\pi = \lim_{k \to \infty} \left ( 3\cdot2^{k-1} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots \sqrt{2 + \sqrt{2 + \sqrt{3}}}}}}} \right )
Page générée en 0.052 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique