Racine carrée
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La racine carrée d’un nombre réel positif x est le nombre positif dont le carré vaut x. On le note \sqrt x ou x½; dans cette expression, x est appelé le radicande.

Une tablette d'argile (L'argile (nom féminin) est une roche sédimentaire, composée pour une large part de minéraux spécifiques, silicates en général d'aluminium plus ou...) datée du XVIIIe siècle av. J.-C. montre que les Babyloniens connaissaient la racine carrée (La racine carrée d’un nombre réel positif x est le nombre positif dont le carré vaut x. On le note ou x½; dans cette expression, x est appelé le radicande.) de deux et un algorithme de calcul.

Tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) réel x positif possède une racine carrée qui est elle-même un nombre réel. La racine carrée d'un nombre entier n est soit un entier, soit un nombre irrationnel, c'est-à-dire qu'elle ne peut être exprimée par une fraction. La racine carrée est à l'origine de la découverte de l'irrationnalité, mais contrairement à une idée répandue, rien n'assure que celle de 2 fut le premier nombre irrationnel connu. L'exemple de démonstrations par l'absurde choisi par Aristote (Aristote (en grec ancien Ἀριστοτέλης / Aristotélês) est un philosophe grec né à Stagire (actuelle Stavros) en...), l'un des fondateurs de la logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois...) est fondé sur l'irrationnalité de 2 : «  Ils prouvent que le diamètre (Dans un cercle ou une sphère, le diamètre est un segment de droite passant par le centre et limité par les points du cercle ou de la sphère. Le...) du carré (Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre côtés ont la même longueur et ses quatre angles...) est incommensurable au côté en montrant que, si l'on admet qu'il lui est commensurable, un nombre impair serait égal à un pair. »

À la Renaissance, des mathématiciens ont été amenés à définir la racine carrée d'un nombre négatif, ce qui a conduit à l'avènement des nombres complexes. L'extraction d'une racine carrée était la cinquième « opération classique », elle est aussi perçue comme une fonction.

Histoire

Photographie de la tablette YBC 7289 avec des annotations traduisant les nombres écrits dans le système babylonien (crédits : Bill Casselman).

La plus ancienne racine carrée connue apparaît vers 1 700 av. J.-C. sur la tablette YBC 7289. Il s'agit de la représentation d'un carré avec, sur un côté, le nombre 30 et, le long de la diagonale (On appelle diagonale d'un polygone tout segment reliant deux sommets non consécutifs (non reliés par un côté). Un polygone à n côtés possède ...), un valeur approchée de √2.

Fonction réelle

Représentation graphique de la fonction racine.

L’application x\mapsto x^2 est une bijection (Une fonction f: X → Y est dite bijective ou est une bijection si pour tout y dans l’ensemble d'arrivée Y il existe un et un seul x dans l’ensemble de définition X tel que...) \mathbb{R}^+\rightarrow \mathbb{R}^+ dont l’inverse est noté x\mapsto \sqrt{x}. Cette fonction s’appelle la fonction racine carrée. Géométriquement, on peut affirmer que la racine carrée de l’aire d’un carré du plan euclidien est la longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet...) de ses côtés.

Analyse

La fonction racine carrée vérifie les propriétés élémentaires suivantes valables pour tous nombres réels positifs x et y :

\sqrt{x} = x^{\frac{1}{2}}
\sqrt{x \times y} = \sqrt{x} \times \sqrt{y}
\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} (sous la condition y\neq 0)
\sqrt{x^2} = |x|.

La fonction racine est continue en tout réel positif x (pour y proche de x, \sqrt{y} est proche de \sqrt{x}). Mieux, cette fonction est 1/2-höldérienne. De plus, elle est dérivable en tout réel strictement positif x, mais elle n’est pas dérivable en x=0. En ce point (Graphie), la pente de la tangente est infinie ; la courbe (En géométrie, le mot courbe, ou ligne courbe désigne certains sous-ensembles du plan, de l'espace usuels. Par exemple, les droites, les segments, les lignes polygonales et les cercles...) représentative admet en 0 une demi-tangente verticale (La verticale est une droite parallèle à la direction de la pesanteur, donnée notamment par le fil à plomb.).

La fonction dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la quantité dont elle dépend, son argument, change. Plus précisément, une dérivée est une expression...) de x\mapsto \sqrt{x} est donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) par :

\frac{\mathrm d}{\mathrm dx}\sqrt{x}={1 \over 2\sqrt{x}}

La fonction racine est en réalité de classe C^{\infty} sur \R_+^*.

\frac{\mathrm d^n}{\mathrm dx^n}\sqrt{x}={(-1)}^{n+1} {(2n-2)! \over n! (n-1)! 2^{2n-1}} \frac{1}{x^{n-1/2}}

Mieux encore, la fonction racine est développable en séries entières. Le développement en série de Taylor de la fonction racine carrée au point 1 s’obtient immédiatement à partir de la formule du binôme ( en mathématique, binôme, une expression algébrique ; voir aussi binôme de Newton et coefficient binomial un binôme est un groupe de deux personnes, voir Équipe en binôme ...) généralisée :

\sqrt{1+h}=1 + \sum_{n=1}^{\infty}(-1)^{n+1} {(2n-2)! \over n! (n-1)! 2^{2n-1}}h^n
=1 + \sum_{n=1}^{\infty}(-1)^{n+1} {(2n)! \over (n!)^2 (2n-1) 2^{2n}}h^n
=1 + \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\binom{2n}{n}}{(2n-1)2^{2n}}h^n
 = 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16} h^3 - \frac{5}{128} h^4 + \cdots

pour tout réel |h| < 1.

Construction géométrique de la racine carrée

AO = 1, OB = a, OH = x

La construction géométrique suivante se réalise à la règle et au compas et permet, étant donné un segment OB de longueur a, de construire un segment de longueur \sqrt{a} :

  • Construire le segment AB de longueur 1+a et contenant le point O avec AO = 1
  • Construire le cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance est appelée rayon...) C de diamètre AB.
  • Construire la droite D perpendiculaire (En géométrie plane, on dit que deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. Le terme de perpendiculaire vient du latin...) à (OB) et passant par O.
  • Nommer H le point d’intersection du cercle C et de la droite D.

Le segment OH est de longueur  \sqrt{a}.

La preuve consiste à appliquer le théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement logique construit à partir...) de Pythagore :

  • Au triangle (En géométrie euclidienne, un triangle est une figure plane, formée par trois points et par les trois segments qui les relient. La dénomination de « triangle »...) rectangle (En géométrie, un rectangle est un quadrilatère dont les quatre angles sont des angles droits.) HOB : OH2 + a2 = HB2
  • Au triangle rectangle ABH : HB2 = (a+1)2 - AH2
  • Au triangle rectangle AOH : AH2 = 12 + OH2

D’où OH2 + a2 = (a+1)2 - (12 + OH2), soit, après simplification OH2 = a, et donc OH = \sqrt{a}.

Cette construction a son importance dans l’étude des nombres constructibles.

Page générée en 0.140 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique