Télescope solaire THEMIS - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les grands thèmes de la recherche solaire

Génération, évolution et structure du champ magnétique

L’imagerie à haute résolution montre clairement qu’à l’exception des taches, le champ magnétique se concentre en régions de très petites dimensions, sous la forme de tubes de 0.2 secondes d’arc. Ces tubes sont, de par la pression magnétique qui s’ajoute à la pression gazeuse, moins denses que le milieu ambiant. Les chercheurs voulaient comprendre comment sont générés ces tubes magnétiques qui émergent dans la photosphère. On savait que le magnétisme solaire est produit dans les couches profondes du Soleil, au niveau de la tachocline qui sépare la zone radiative profonde de la zone convective plus superficielle par un effet dynamo. Les structures observées sont plus chaudes de 1000°C que la photosphère et présentent une intensité du champ magnétique de l’ordre de quelques centaines de Gauss, voire moins. Ces mesures dépendent de la raie spectrale dans laquelle elles sont établies.

Pour établir un modèle d’atmosphère magnétique réaliste, il fallait donc des observations ayant une meilleure résolution angulaire, dans plusieurs raies simultanément et avec une étude complète de la polarisation dans ces raies.

Le chauffage de la couronne solaire

Nous avons vu précédemment que l’observation de la couronne solaire a permis d’y mesurer une température de plus d’un million de degrés. En 1973, Skylab a fourni aux astronomes de très belles images en rayons X qui révélaient certaines structures du plasma coronal. Les données se sont accumulées et permettent de comprendre comment le vent solaire est diffusé selon les structures magnétiques de la couronne mais elles n’expliquent pas la brusque remonté de température dans la zone de transition entre la chromosphère et la couronne. En 1979, Brigitte Schmieder, Pierre et Nicole Mein ont réalisé un bilan énergétique qui prenait en compte le flux radiatif et l’énergie mécanique du Soleil liée aux oscillations mesurées. Bien que leurs travaux importants aient mis en évidence certaines propriétés de la propagation des énergies dans l’atmosphère solaire, ils étaient insuffisants pour rendre compte du chauffage de la couronne. L’équipe aurait aimé pouvoir disposer simultanément de cartes de champ magnétique dans la photosphère et la chromosphère ainsi que de cartes de champs de vitesses à plusieurs altitudes.

Les courants électriques dans la couronne et les éruptions solaires. Une éruption est une libération brutale d’énergie magnétique. Cet évènement spectaculaire propulse dans l’espace des électrons énergétiques à 1 MeV mais aussi dans une proportion moindre des électrons plus énergétiques à 10 MeV, des protons, du rayonnement Hα, UV, EUV, des rayons X ainsi que des ondes de choc. Une éruption présente plusieurs phases qui sont l’agitation prééruptive (2 heures), le déclenchement (1 seconde), la phase de flash (10 minutes) et la phase principale (1 heure). On explique le déclenchement de l’éruption par l’accumulation d’énergie dans la couronne par les courants électriques et la reconnexion magnétique qui libère l’énergie.

Les chercheurs désiraient obtenir des cartes à trois dimensions du système de courants par la mesure des champs magnétiques. Il fallait pour cela un magnétomètre capable de mesurer les 3 composantes du champ magnétique.

Physique des structures fines de la photosphère

Au pic du Midi, avec la lunette Jean Rösch, Richard Muller avait réalisé d’excellents travaux d’imagerie de la photosphère qui ont permis de mieux connaître certaines structures et d’en découvrir d’autres.

La granulation autour des taches solaires est légèrement plus petite que la granulation normale et présente certaines différences dynamiques qui semblent révéler un champ magnétique faible qui modifierait la convection. Les filigrées apparaissent comme des points brillants aux limites des supergranules. Ils sont dans les intergranules et ont une dimension inférieure à 0.3 secondes d’arc, soit moins de 250 kilomètres. Ils sont associés à des champs magnétiques très forts (1500 G). Les facules photosphériques sont des structures brillantes observées dans le continu vers le limbe. Elles sont granulaires et présente un fort excès de température. La pénombre des taches solaires est formée de grains brillants, alignés en filaments qui se détachent sur un fond sombre. Larges de 0.4 secondes d’arc, ils sont animés d’un mouvement dirigé vers l’ombre. On observe aussi dans l’ombre des taches des points brillants dont la nature est fortement discutée.

Ces objets nécessitaient des observations à haute résolution angulaire que seul un instrument de grand diamètre pouvait fournir.

Page générée en 0.099 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise