et la relation d'Euler n'est pas vérifiée.
Par contre, remplaçons certains hexagones de ce recouvrement impossible par des pentagones. Si le nombre de faces ne varie pas, le nombre d'arêtes et de sommets diminue : pour chaque pentagone ajouté, on a ( 6 - 5 )÷ 2 arêtes, c'est-à-dire une demi-arête en moins et (6 - 5)÷3 sommets, c'est-à-dire un tiers de sommet en moins; s − a + f augmente donc à chaque fois de la différence, c'est-à-dire d'un sixième. Pour que la relation d'Euler soit respectée, il faut que s − a + f initialement à 0, devienne égal à 2, donc augmente de 12÷6. Bref, il faut remplacer 12 hexagones par autant de pentagones. Le nombre des sommets s est alors de 2f - 4 et celui des arêtes a de 3f - 6. C'est ainsi que l'on rencontre l'icosaèdre tronqué (ballon de football ou fullerène C60). Un cas extrême est celui du dodécaèdre ( f = 12 ), où il ne reste plus aucun hexagone. Dans la figure ci-dessous (où f = 344 faces), quatre des douze pentagones sont visibles.
On peut ramener cette relation à une propriété de pavage de la sphère, en utilisant la technique imagée suivante
Cette opération est en fait une projection centrale. On obtient alors sur la sphère des «sommets», images des sommets du polyèdre, des «arêtes» qui sont des arcs de grands cercles, et des portions de sphères délimitées par les arêtes qui sont des «polygones sphériques». On peut qualifier cette configuration de pavage de la sphère par des polygones sphériques.
On montre encore que pour un tel pavage, la formule F + S - A = 2 est vérifiée. Une des méthodes possibles est d'utiliser des propriétés des triangles sphériques.
Henri Poincaré, en 1893 a démontré que la relation d'Euler se généralisait à tout n-polytope convexe :
où n est la dimension du polytope et Nk le nombre de k-simplexes du n-polytope (N0 est le nombre de sommets, N1 le nombre d'arêtes, N2 le nombre de faces etc. )
La quantité