En mathématiques, et plus précisément en analyse complexe, le théorème de l'application conforme, dû à Bernhard Riemann, assure que toutes les parties ouvertes simplement connexes du plan complexe (qui ne sont ni vides ni égales au plan tout entier) sont conformes entre elles. Une conséquence de ce théorème, souvent connue sous le nom de théorème de la représentation conforme de Riemann, ou de théorème d'uniformisation de Riemann, donne une classification des surfaces de Riemann simplement connexes.
Le théorème fut énoncé (sous l'hypothèse plus forte d'une frontière formés d'arcs différentiables) par Bernhard Riemann dans sa thèse, en 1851. Cette version initiale fut décrite par Lars Ahlfors comme "formulée en définitive dans des termes qui défient toute tentative de démonstration rigoureuse, même à l'aide des méthodes modernes". La démonstration de Riemann dépendait du principe de Dirichlet, qui était considéré comme vrai à cette époque. Cependant, Karl Weierstraß découvrit des exceptions à ce principe, et il fallut attendre les travaux de David Hilbert pour une démonstration de ce que, dans une large mesure, il s'appliquait aux situations étudiées par Riemann. Toutefois, le principe de Dirichlet ne s'appliquait pas à des domaines simplement connexes de frontière non suffisamment lisse ; de tels domaines furent étudiés en 1900 par W. F. Osgood.
La première démonstration rigoureuse du théorème (dans le cas général) fut publiée par Constantin Carathéodory en 1912. Elle utilisait des surfaces de Riemann ; Paul Koebe (en), deux ans plus tard, en découvrit une version simplifiée permettant de s'en passer.
En 1922, une autre démonstration fut publiée par Leopold Fejér et Frigyes Riesz ; plus courte que les précédentes, elle reprenait l'idée de la preuve de Riemann passant par la solution d'un problème d'optimisation ; cette preuve fut par la suite encore simplifiée par Alexander Ostrowski et par Carathéodory, qui précisa le résultat sous la forme du théorème portant son nom (en), et donnant des conditions sous lesquelles la bijection peut se prolonger aux frontières des domaines.
Une description plus intuitive du résultat est que si un ouvert du plan peut être mis en bijection continue avec le disque unité, il existe une autre bijection qui est dérivable (au sens complexe). Formulé ainsi, le théorème peut sembler assez naturel ; les remarques suivantes devraient convaincre qu'il n'en est rien.